4h4-auto.ru

4х4 Авто
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип автоматической регулировки усиления в приемниках (АРУ)

Принцип автоматической регулировки усиления в приемниках (АРУ).

Напряжение входного сигнала приёмника может изменяться в очень больших пределах на 40…80 дБ (10 2 …10 4 раз), что вызывает изменение уровня, а, следовательно, и мощности сигнала на выходе приёмника. Для защиты оконечных устройств от перегрузки необходимо регулировать усиление приёмника в таких же пределах. Ручная регулировка усиления позволяет обеспечить нормальную работу приёмника только при очень медленных изменениях уровня входного сигнала, например, при перестройке с одной радиостанции на другую, да и то – сопряжена с эксплуатационными неудобствами. При больших скоростях изменения уровня входного сигнала, например при быстрых замираниях радиоволн, необходимо использовать автоматическую регулировку усиления (АРУ).

Таким образом, АРУ должна обеспечить относительное постоянство напряжения сигнала на выходе детектора и приёмника при изменении напряжения сигнала на входе РПУ.

Рассмотрим наиболее часто применяемую инерционную систему АРУ непрерывного действия с обратным регулированием (за счёт обратной связи по постоянному току) (Рис.2).

Рис.2 Структурная схема АРУ.

Приведённая на Рис.2 схема АРУ обеспечивает уменьшения усиления УРЧ и УПЧ при увеличении уровня входного сигнала UВХ и, наоборот, увеличение усиления при снижении уровня сигнала. Регулировка осуществляется за счёт отбора энергии полезного сигнала UС и преобразования его в постоянное регулирующее напряжение UРЕГ, изменяющееся пропорционально амплитуде входного сигнала UВХ. Этим напряжением регулируется усиление каскадов УРЧ и некоторых каскадов УПЧ так, чтобы уровень выходного напряжения UВЫХ практически не изменялся.

Сигнал промежуточной частоты UС = UПР с выхода УПЧ детектируется амплитудным детектором АРУ (АДАРУ) и фильтруется в ФНЧ с постоянной времени tФНЧ = 0,1…0,3 сек.

Большее значение tФНЧ > 0,3 сек приведёт к недопустимому увеличению инерционности системы АРУ, что будет заметно на слух при резком изменении уровня входного сигнала.

Меньшее значение tФНЧ < 0,1 сек, из-за недостаточной фильтрации звуковых частот может привести к демодуляции сигнала и появлению искажений.

Регулировка усиления каскадов может осуществляться различными способами:

— изменением крутизны характеристики усилительных элементов (КU = S RН);

— изменением сопротивления нагрузки усилительных элементов (КU = S RН);

— изменением напряжения питания усилительных элементов (КU

Два последних способа менее эффективны, так как пределы регулировки усиления не превышают 2…4 раза на один каскад. Регулировка за счёт изменения режима работы транзистора по базовой цепи (изменением крутизны входной динамической характеристики) позволяет изменять усиление каскада в 8…10 раз.

Для этой цели разработаны специальные транзисторы с переменной крутизной, в которых растянутый начальный участок входной динамической характеристики позволяет плавно и в широких пределах изменять её крутизну (Рис.3). К таким транзисторам можно отнести ГТ328, ГТ346, КТ3127, КП307 и много других.

На Рис.3 видно, что при увеличении начального базового смещения U’ > U рабочая точка перемещается на участок с большей крутизной входной динамической характеристики. При этом амплитуда базового тока увеличивается I’Бm > IБm за счёт увеличения усиления транзистора.

Изменение U происходит автоматически по системе АРУ при помощи регулирующего напряжения UРЕГ.

Рис.3 Пояснение принципа регулировки усиления транзистора изменением напряжения базового смещения U.

При выборе каскадов для регулировки усиления в системе АРУ необходимо учитывать следующее:

1. Амплитуда усиливаемого сигнала должна быть малой, чтобы использование нелинейных участков характеристик транзисторов не привело к появлению нелинейных искажений. С этой точки зрения пригодны все каскады УРЧ и первые каскады УПЧ.

2. Нельзя использовать в качестве регулируемых узкополосные полосовые усилители с нагрузкой в виде ФСС или пьезофильтров. Значительное изменение режимов работы транзисторов может привести к изменению межэлектродных ёмкостей транзистора, а следовательно к расстройке избирательной системы.

3. Нельзя регулировать усиление в смесительных каскада преобразователей частоты, так как при этом нарушается оптимальный режим их работы.

На Рис.4 приведены амплитудные характеристики приёмника для различных типов АРУ.

Если в приёмнике отсутствует АРУ, то зависимость амплитуды выходного напряжения от амплитуды входного UВЫХ = ƒ(UВХ) соответствует кривой 1. При слабых сигналах она линейна, а при сильных в последних каскадах приёмника наступает перегрузка и усиление приёмника уменьшается, что приводит к появлению искажений.

При наличии простой АРУ (кривая 2) регулирующее напряжение создаётся и используется при любых амплитудах входного сигнала. Недостатком простой АРУ является то, что усиление приёмника снижается не только для сильных сигналов, но и для самых слабых (хотя и в меньшей степени), для приёма которых необходимо использовать полное усиление приёмника.

Рис.4 Амплитудные харктеристики приёмника. 1 – без АРУ; 2 – с простой АРУ; 3 – при задержанной АРУ; 4 – при задержанной и усиленной АРУ.

Этот недостаток устраняется в задержанной АРУ (кривая 3), где регулирование начинается тогда, когда напряжение на входе приёмника достигнет определённого уровня. Подобный режим можно получить, если подать на диод детектора АРУ некоторое запирающее напряжение, называемое напряжением задержки UЗАД. Его обычно выбирают равным амплитуде напряжения на входе детектора, которое соответствуюет номинальной чувствительности приёмника UЗАД = UВХ.МИН. Таким образом при увеличении уровня сигнала от 0 до UВХ.МИН система АРУ не действует и увеличение выходного напряжения происходит по кривой 1. После того как уровень сигнала превысит UЗАД, начинает действовать АРУ и выходное напряжение будет изменяться далее по кривой 3. Для регулирования усиления в высокочувствительных каскадах УРЧ применение АРУ с задержкой обязательно.

Для улучшения стабилизирующего действия системы АРУ в её шину вводят дополнительные усилители постоянного тока УПТ. Такая АРУ называется задержанной и усиленной (кривая 4).

Эффективность АРУ характеризуется следующими показателями:

— величиной изменения входного напряжения Д= UВХ.МАХUВХ.МИН;

— допустимой величиной изменения выходного напряжения В = UВЫХ.МАХUВЫХ.МИН;

— величиной изменения коэффициента усиления системой АРУ: Д ⁄ В (раз).

Для приёмников высшей группы сложности по отечественному стандарту Д = 40 дБ (100 раз), В = 6 дБ ( 1,7 раз).

Схема простой АРУ.

В незадержанной АРУ (Рис.5) детектор приёмника и детектор АРУ можно совместить в одном VD1C5R5C6. Включение диода VD1 позволяет выделить на нагрузке R6С6 постоянную составляющую напряжения отрицательной полярности, из которого после фильтрации в ФНЧ RАРУСАРУ образуется регулирующее напряжение – UРЕГ.

Читайте так же:
Регулировка сцепления на мазе 238 ямз видео

Начальное базовое смещение +U транзистора VT1 первого каскада УПЧ образуется как сумма положительного напряжения +UПИТ, подаваемого от источника К через R2, L2 и отрицательного регулирующего напряжения — UАРУ. Причём +U = +UПИТ – UАРУ, т.е. IUПИТI > IUАРУI.

Рис.5 Принципиальная схема простой АРУ.

Чем больше амплитуда принимаемых сигналов UВХ, тем больше регулирующее напряжение – UАРУ, что приводит к уменьшению начального базового смещения +U, крутизны характеристики транзистора S и усиления каскада УПЧ КU. В результате компенсации, выходное напряжение приёмника UВЫХ будет стабильно и мало зависеть от изменения уровня входного сигнала UВХ.

Постоянная времени АРУ, как было отмечено раньше, tАРУ = RАРУCАРУ = 0,1…0,3 сек. Учитывая, что в биполярных транзисторах базовый ток I относительно большой и принимает значения десятки и сотни мкА, то сопротивление резистора RАРУ не может быть больше нескольких десятков кОм (по схеме RАРУ = 20 кОм). Конденсатор САРУ рассчитывается из соотношения САРУ = (0,1…0,3 с) ⁄ RАРУ = 10 мкФ.

Использование в регулирующих каскадах полевых транзисторов с большим входным сопротивлением позволяет увеличить RАРУ до 1…1,5 МОм. Тогда номинал САРУ составит всего 0,1 мкФ.

Сопротивление резистора обратной связи R1 должно быть незначительным, чтобы ООС не снижала эффективность регулировки системы АРУ.

Из-за уменьшении чувствительности приёмника при слабых сигналах простую АРУ нельзя использовать для регулировки усиления в каскадах УРЧ, так как при этом снижается отношение сигнал/шум.

Дата добавления: 2016-07-05 ; просмотров: 14185 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Автоматическая регулировка усиления

Автоматическая регулировка усиления, АРУ (англ. automatic gain control , AGC ) — процесс, при котором выходной сигнал некоторого устройства, как правило электронного усилителя, автоматически поддерживается постоянным по некоторому параметру (например, амплитуде простого сигнала или мощности сложного сигнала), независимо от амплитуды (мощности) входного сигнала. В аппаратуре, использующейся для прослушивания радиовещательного эфира, АРУ также называют устарелым термином автоматическая регулировка громкости (АРГ), а в приёмниках проводной связи — автоматической регулировкой уровня. В импульсных приёмниках (радиолокационных и других) применяют АРУ, учитывающие особенности работы в импульсном режиме.

АРУ применяется для исключения перегрузки выходных каскадов приёмников при больших входных сигналах. Используется в бытовой аппаратуре, в приёмниках спутников связи и т. д. Также, существует ручная регулировка усиления (РРУ), выполняется на пассивных или активных (электронных) радиоэлементах или с помощью аттенюаторов. [1]

В 1925 Гарольд Олден Уилер изобрел автоматическую регулировку громкости (АРГ) и получил патент. Карл Кюпфмюллер [en] издал анализ систем АРУ в 1928. [2] К началу 1930-х все бытовые радиоприемники включали автоматическую регулировку громкости. [3]

Существует три типа АРУ: простая, усиленно-задержанная и просто задержанная. Или по типу сигнала схемы АРУ бывают двух типов:

Также, если искажения сигнала не важны, применяют схему ограничителя.

Напряжение сигналов, поступающих на вход приёмника, как правило значительно меняется: из-за различия передаваемой мощности передатчиков и расстояний их от места приёма, замираний сигналов при распространении, резкого изменения расстояний и условий приёма между передатчиком и приёмником, установленными на движущихся объектах (самолётах, автомобилях и т. д.), и других причин. Это приводит к недопустимым колебаниям или искажениям сигналов в приёмнике. Система АРУ стремится минимизировать различия напряжения выходного и входного сигнала приёмника. Это осуществляется посредством цепей, которые передают выпрямленное детектором регулирующее напряжение на базы транзисторов, усилителей высокой, промежуточной частоты и преобразователя частоты, которые уменьшают их усиление с увеличением напряжения сигнала на входе и наоборот: происходит компенсация в приёмнике изменений напряжения входных сигналов. Основные параметры систем АРУ:

  • Динамический диапазон (дБ) — это глубина изменения входного сигнала (разница между минимальным и максимальным сигналом), при котором ещё выходной сигнал находится в допустимых пределах;
  • Время срабатывания АРУ (дБ/с) — отражает скорость реакции АРУ на скачок входного сигнала. Данный параметр равен бесконечности (нулевое время срабатывания) для ограничителя сигнала.

Важным свойством системы АРУ является наличие выхода, показывающего уровень входного сигнала (невозможно сделать для ограничителя).

Обратная

Эта схема получила такое название, из-за того, что управляющее напряжение (Uупр) подается со стороны выхода в направлении входа РУ. Пропорционально уровню входного сигнала обеспечивается управляющее напряжение, благодаря коэффициенту передачи КД детектора АРУ (ДЕТ): Uупр = КД ⋅ Купр ⋅ Uвых. Фильтр АРУ (ФНЧ) отфильтровывает составляющие частот модуляции и пропускает медленно меняющиеся составляющие напряжения Uупр. Цепь АРУ называется простой, если она состоит только из детектора и фильтра. В цепь АРУ может включаться усилитель, устанавливаемый после детектора (УПТ).

Прямая

Входное напряжение Uвх детектируется, и за счёт этого формируется управляющее напряжение Uупр. Выходное напряжение получается путём умножения Uвх на коэффициент усиления Ko. Таким образом, при увеличении Uвх уменьшается Ko; при этом их произведение может оставаться постоянным, что позволяет реализовать идеальную характеристику АРУ, но практически добиться этого не удается. Прямая схема АРУ имеет некоторые существенные недостатки, один из которых состоит в необходимости включать перед детектором в цепи АРУ дополнительный высокочастотный (ВЧ) усилитель с большим коэффициентом усиления, прямая АРУ также нестабильна, то есть подвержена воздействию различных дестабилизирующих факторов. В связи с этим она нашла ограниченное применение.

Пассивная

Пассивные АРУ-устройства, не потребляющие электрическую энергию, то есть не имеющие в своём составе источников тока. Как правило, такие пассивные АРУ выполняются в виде аттенюаторов, каждый из резисторов которого представляет собой термосопротивление (термисторы). С повышением температуры сопротивление увеличивается, что вызывает уменьшение вносимого ослабления аттенюатором. И, наоборот, при понижении температуры окружающей среды ослабление аттенюатора увеличивается.

АРУЗавтоматическая регулировка уровня записи в устройствах магнитной звукозаписи.

В общем случае АРУЗ выравнивает амплитуду звукового сигнала для записи равномерного и качественного звука.

Автоматическая регулировка уровня записи применяется в съемочной технике и других устройствах магнитной звукозаписи, используемой в видеопроизводстве для предотвращения проблем ручной регулировки уровня записи звука. При ручной регулировке уровня записи звука необходимо постоянно следить за индикатором звука и устанавливать приемлемый уровень записи звука согласно уровню принимаемого звукового сигнала. Это отвлекает от работы с визуальным содержанием кадра. При этом даже при постоянном слежении за индикатором записи звука избежать кратковременных перегрузов или, наоборот, потери звуковой информации не удаётся. Ручное регулирование уровня записи трубет временных затрат, что негативно сказывается на результатах работы.

Читайте так же:
Регулировка тормозной рычажной передачи тэм2

Способ АРУЗ заключается в том, что:

  • в процессе звукозаписи измеряют уровень записываемого сигнала, на основе которого регулируется коэффициент усиления усилителя в тракте звукозаписи до достижения требуемой величины уровня записываемого сигнала,
  • отличающийся тем, что в тракте звукозаписи постоянно определяют текущее значение коэффициента стохастичности записываемого сигнала и сравнивают полученное значение с пороговой величиной, которая задается заранее,
  • а коэффициент усиления усилителя регулируется только при текущем значении коэффициента стохастичности, не превышающим пороговой величины,
  • и поддерживают постоянный коэффициент усиления усилителя, равный коэффициенту усиления усилителя в момент превышения текущим значением коэффициента стохастичности заданной пороговой величины, в течение всего периода такого превышения.

Радиолюбительский приёмник «Анар»

Радиоприемник «Анар» предназначен для прослушивания радиостанций, работающих CW и SSB на всех любительских диапазонах. Он обладает такими техническими характеристиками:

— чувствительность приемника — не хуже 1 мкВ (при соотношении сигнал-шум 3:1);

— двухсигнальная избирательность при расстройке сигналов 20 кГц — не менее 70 дБ;

— полоса пропускания ПЧ — 3,5 кГц;

— нестабильность частоты ГПД — 10 Гц при изменении температуры на 1ºС.

— диапазон регулирования АРУ (при изменении выходного напряжения не более, чем на 6 дБ ) — не менее 100 дБ;

— номинальная выходная мощность УНЧ — 1 Вт.

— питание приемника — 220 В/50 Гц или постоянного напряжения +12. 24 В.

Принципиальная схема приемника показана на рис.1.

Радиоприемник Анар Принципиальная схема Рубцов

Приемник представляет собой супергетеродин с двойным преобразованием частоты. Первая ПЧ равна 5,5 МГц, вторая — 500 кГц. Сигнал радиочастоты с антенного гнезда через конденсатор С1 поступает на входной контур L1C3. Подвижный контакт первой галеты переключателя S1 на различных диапазонах замыкает часть витков катушки, изменяя тем самым ее индуктивность. Вторая галета переключателя подключает к контуру на различных диапазонах конденсаторы С4, С5, С6, С7, тем самым согласуя его со входом смесителя. Первый смеситель приемника собран на транзисторах VT1, VT2 по балансной схеме.

Сигнал РЧ подается на базы транзисторов, а сигнал ГПД — на их эмиттеры. ГПД приемника выполнен на транзисторе VT10.

На транзисторе VT11 собран эмиттерный повторитель, являющийся буфером между ГПД и смесителем. Сигнал первой ПЧ 5,5 МГц выделяется контуром С10, С11, обмотки I, II Тр2 и далее отфильтровывается двухзвенным полосовым фильтром L2C13, L3C15, а затем усиливается усилителем первой ПЧ, выполненным на VT3.

Транзистор VT3 одновременно с усилительными функциями выполняет роль второго смесителя приемника. На его эмиттер подается сигнал частотой 5 МГц с генератора, выполненного на транзисторе VT12 с параметрической стабилизацией частоты. Сигнал второй промежуточной частоты (500 кГц) выделяется контуром С19, С20, входная обмотка электромеханического фильтра. Он отфильтровывается ЭМФ и затем усиливается усилителем второй ПЧ, выполненным по каскодной схеме на транзисторах VT4, VT5, VT6. В коллекторную цепь транзистора VT5 включен контур L4С26, настроенный на частоту 500 кГц. Сигнал частотой 500 кГц с этого контура попадает на SSB-детектор, выполненный на диодах VD1-VD4 по кольцевой балансной схеме. На него же подается и опорный сигнал с частотой 500 кГц. Сигнал звуковой частоты с SSB-детектора через фильтр НЧ (С28, R16, C30) поступает на вход 10 DA1, на которой собран предварительный УНЧ. С выхода 5 этой микросхемы сигнал НЧ поступает одновременно на детектор АРУ (VD6, VD7) и на регулятор громкости R24. С резистора R24 сигнал НЧ поступает на оконечный УНЧ VT7, VT8, VT9 и далее либо на громкоговоритель и телефоны одновременно, либо только на телефоны — в зависимости от положения переключателя S3.

С детектора АРУ сигнал НЧ подается на усилитель сигнала АРУ, выполненный на транзисторе VT14, в эмиттерную цепь которого включен прибор РА1, используемый в качестве S-метра. С коллектора транзистора VT14 управляющее напряжение АРУ подается на УПЧ 500 кГц (база VT5). Блок питания приемника состоит из сетевого трансформатора Тр3, имеющего две выходные обмотки, обеспечивающие напряжение 12 В и 15 В, и двух стабилизаторов +1  В и +9 В. Каскады, потребляющие во время работы непостоянное количество энергии (в зависимости от силы входного сигнала), питаются от стабилизатора +12 В, а остальные каскады (гетеродины) — от стабилизатора +9 В. Такая схема запитки каскадов благоприятно сказывается на стабильности частоты всех трех гетеродинов.

Чертеж печатной платы ГПД представлен на рис.2, основной платы – на рис.3. Расположение деталей на них – на рис.4 и 5 соответственно. На рис.6 показан эскиз шасси, на рис.7,8,10-12 – отдельных деталей конструкции и вид сверху на смонтированное шасси со снятой верхней крышкой, на рис.9 — эскиз передней панели. Чертежи можно скачать по ссылке.

Радиоприемник Анар Эскиз передней панели Рубцов

Переключатель S1 — галетного типа из четырех галет (на 9 положений). Трансформаторы Тр1 и Тр2 намотаны на кольцах 50 ВЧ К7х4х2 тремя скрученными между собой проводами (шаг скрутки — 3 мм). Фильтр — электромеханический ЭМФ 500-3В (можно заменить на ЭМФ 500-3Н). Транзисторы КТ315 можно заменить на КТ306, КТ312, КТ316. КТ815 можно заменить на КТ817, КТ814 — на КТ816, КТ817 в блоке питания — на КТ805БМ. Диоды КД503 можно заменить на КД504, КД510, КД512. Прибор РА1 — с током полного отклонения 100 мкА.

Радиоприемник Анар Намоточные данные катушек и трансформаторов Рубцов Радиоприемник Анар Чертеж катушки ГПД Рубцов

Верньер применен самодельного типа с коэффициентом замедления около 20 (описан в [1]). Намоточные данные катушек и трансформаторов приведены в табл.1, чертеж катушки L1 показан на рис.13.

Настройку приемника начинают с проверки и установки режимов по постоянному току согласно указанным на схеме. Сначала проверяют работу стабилизаторов. Стабилизатор, выполненный на транзисторе VT17, настройки не требует. На его выходе (эмиттер VT17) должно присутствовать напряжение +9 В. Выходное напряжение стабилизатора, выполненного на транзисторах VT15, VT16, устанавливают резистором R52 на уровне +12 В. Затем проверяют режимы по постоянному току остальных каскадов и устанавливают их согласно указанным на схеме, если имеется отличие более чем на 20%. Далее приступают к наладке оконечного УНЧ.

Подбирая сопротивление резистора R25, устанавливают на эмиттерах транзисторов VT8, VT9 напряжение, равное половине питающего. Ток покоя этих транзисторов (при отсутствии сигнала на входе) в пределах 5. 8 мА устанавливают подбором величины резистора R28. Далее, подав с ГСС сигнал частотой 1 кГц и амплитудой 0,3 В (синусоида) на С34, проверяют работу УНЧ на слух и осциллографом (на отсутствие заметных искажений).

Настройку предварительного усилителя НЧ (DA1) производят подбором величины резистора R22 до получения половинного напряжения питания на выходе 5 микросхемы (при отсутствии входного сигнала). Подбором величины сопротивления R20 добиваются отсутствия искажений на выходе усилителя при подаче на его вход (С31) с ГСС сигнала частотой 1 кГц (синусоида) и амплитудой 0,1 В.

Режимы транзисторов УПЧ-II (VT4, VT5, VT6) устанавливаются автоматически. Настройку УПЧ производят вращением сердечника катушки L4 до получения максимума сигнала на выходе УНЧ (при максимуме показаний S-метра), предварительно подав на его вход сигнал с ГСС частотой 500 кГц и амплитудой 50 мВ. Частоту генератора 500 кГц (VT13) устанавливают подстройкой сердечника катушки L12 на нижнем скате характеристики ЭМФ. Контроль ведут частотомером или на слух по нормальной разборчивости сигнала (на частоте 14 МГц после полной настройки приемника) и отсутствию зеркальной боковой полосы. Частоту генератора 5 МГц (VT12) устанавливают подстройкой конденсатора С64. Вращением сердечника катушки L10 добиваются максимальной амплитуды вырабатываемого генератором сигнала. Контроль ведут осциллографом и частотомером. Частоты ГПД (VT10) устанавливают согласно табл.2, подстраивая конденсаторы С39, С41, С42, С44, С45, С48 соответственно выбранному диапазону. УПЧ-I настраивают вращением сердечников катушек L2, L3 и ротора конденсатора С11 по максимуму сигнала на выходе после подачи на С10 сигнала с ГСС (F=5,5 МГц, U=50 мВ). И, наконец, подстройкой С3 получают максимум сигнала на выбранном диапазоне.

Тема: УКВ в FM — подскажите технологию плз

УКВ в FM — подскажите технологию плз

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: УКВ в FM — подскажите технологию плз

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: УКВ в FM — подскажите технологию плз

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: УКВ в FM — подскажите технологию плз

Сообщение от Alemoke

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: УКВ в FM — подскажите технологию плз

Сообщение от Николаич

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: УКВ в FM — подскажите технологию плз

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: УКВ в FM — подскажите технологию плз

Сообщение от Rukoff

Найти контур гетеродина и каскад смесителя, в старых схемах, вероятнее всего, смеситель и гетеродин совмещенные. Определите элементную базу, т. е. там ИМС или только транзисторы, если смеситель на транзисторе, то сигнал ВЧ идет ему в эмиттер- выпаять конденсатор между смесителем и УВЧ и подавать УКВ сигнал непосредственно " в эмиттер", через небольшую емкость, можно родную, сразу от антенны, лучше с усилителем. И, вот теперь, можно подстройкой катушки гетеродина (или заменой) найти и уложить нужный диапазон.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: УКВ в FM — подскажите технологию плз

Настрой приёмник на станцию.
Найди катушку, приближение к которй медного стержня не ослабляет сигнал (это катушку входного контура/УРЧ), а изменяет частоту настройки приёмника — это и будет катушка гетеродина. Отмотай с два витка.
После этого, пользуясь контрольным приёмником, определи самую низкочастотную радиостанцию ФМ-диапазона. Перегони стрелку настраиваемого приёмника в НЧ-конец диапазона или настрой его на примерно ту же частоту.Растягивая-сжимая витки гетеродинной катушки диэлектрической "лопаткой", настройся на НЧ-станцию. Если станция "ловится" по шкале "выше" положенной частоты, увеличивай количество витков, если приходится слишком растягивать катушку — уменьшай.

После этого найди подстроечный конденсатор гетеродина. Он обычно расположен на переменном конденсаторе настройки. Принцип тот же — при изменении его ёмкости или прикосновении к его выводам отввёрткой частота настройки изменяется. Определи по контр. приёмн. станцию на ВЧ-краю ФМ-диапазона и выставь стрелку настраиваемого на эту частоту. Вращением ротора подстроечного кондика настройся на эту станцию.

После этого верни стрелку на место, где ловилась станция НЧ-конца диапазона. Поскольку контур гетеродина расстроен изменением ёмкости подстроечника и станция "ушла", вновь настройкой катушки "подгони" станцию на прежнее место. Снова вернись на ВЧ-край и снова подстроечником гетеродина верни на прежнее место ВЧ-станцию. Так сделай раза по три на каждом конце диапазона. С каждым разом станции будут всё ближе к положенному им месту на шкале.

Это ты произвёл укладку диапазона. После этого перестройся на НЧ-станцию и сжатием-растяжением витков другой катушки (или катушек; как ты помнишь, это катушки входного контура или усилителя радичастоты — УРЧ) добейся улучшения громкости приёма. Перестройся на станцию ВЧ-края и вращением другого (других) подстроечника(ов) добейся того же. Поскольку контур на НЧ-конце от этого расстроится, повтори настройку три-четыре раза.

КВ приемник мирового уровня? Это не очень просто!

Автор: Как я и обещал, в этой статье мы будем строить простой всеволновый приемник, работающий с различными видами модуляции, доступный для повторения радиолюбителями, имеющими определенный навык работы с паяльником, принципиальными схемами и измерительными приборами.

Вдаваться в теорию радиосвязи и знакомить с азами электроники и радиотехники в рамках этой статьи я не возьмусь, для этого имеется большое число хорошей литературы, написанной без фонетических шероховатостей и матерных излишеств разными умными людьми.

В оппоненты я пригласил начинающего радиолюбителя, живо интересующегося радиосвязью, гуляющего по форумам и имеющего определенную теоретическую подготовку.

Оппонент: Привет! Как дела?

Автор: Вашими молитвами. Но не будем отвлекаться на любезности — перейдем сразу к делу. Набросал намедни структурную схему радиприемника, рекомендую ознакомиться.

Рис.1

Оппонент: Обычная схема, ничего особенного, таких я видел много, хотя на вид, конечно, попроще, чем у «приемника мирового уровня».

Автор: Значительно попроще, но главная плодотворная дебютная идея здесь состоит в выборе первой промежуточной частоты. Обрати внимание, не 55,5 МГц, как в упомянутом приемнике Кульского, не 55,845 как в Дегенах и Туксанах, а 43 Мгц. «Что за магическая цифра?»- предвижу я вопрос, «и чем она лучше любой другой?». Да тем, что при перестройке гетеродина в пределах 43-103 Мгц, мы охватываем нашей схемой ДВ-СВ-КВ диапазон от 0 гц-30 Мгц, а зеркальным к нему оказывается канал 86-146 Мгц. То есть, простым переключением входных фильтров с НЧ на ВЧ, мы дополнительно к нижнему диапазону добавляем вещалки на УКВ 87,5-108МГц, авиадиапазон 118-137 Мгц и любительский 2 м диапазон на 144-146 МГц.

Оппонент: И что, кого-то можно услышать на 2м диапазоне?

Автор: Имеющий уши, да что-нибудь услышит.
Бывают тут и «круглые столы» с обсуждением философских вопросов типа: “Где взять заземление?”, и трепетное ностальгирование по забытому вкусу портвейна «Агдам», и бескомпромиссная борьба за чистоту эфира некоего Семёна Ильича, позиционирующего себя как опытного радиолюбителя с позывным, авторитет которого завоёван не в сортирах местной администрации Роскомнадзора, а с паяльником в руках и собственной работы антенной в огороде.
Борьба эта, как основа морально-воспитательной воли радиолюбителя, сводится к сорокаминутному обкладыванию половыми органами некоего корреспондента за «влезание на чужую частоту и засерание эфира».
Корреспондент в свою очередь тоже не отсиживается в окопе, и злобно пробиваясь сквозь эфирные шумы, кладёт со своим прибором и на Семёна Ильича, и на его позывной, и на весь Роскомнадзор со всеми его структурами и «старыми пердунами».
В общем, обычная жизнь обычного радиолюбительского диапазона.

Оппонент: Не вижу на схеме ни одной системы АРУ, а в приемнике «мирового уровня» их применено аж две штуки. В чем подвох?

Автор: Да нет подвоха. АРУ, конечно, вещь полезная, но давайте разберемся, когда и для чего нужна автоматическая регулировка усиления.
Во-первых, АРУ позволяет избежать перегрузку усилителя низкой частоты при в резком изменении уровня принимаемого сигнала и делает прослушивание эфира более комфортным.
Во-вторых, предотвращает интермодуляционные искажения, возникающие во входных цепях, смесителях и УПЧ приемника при достижении уровня сигнала на антенном входе определенной критической величины.

Теперь давайте рассуждать логически. Я, например, очень сильно сомневаюсь в том, что начинающий радиолюбитель с данным приемником будет использовать полноразмерную коротковолновую антенну, скорее всего — это будет либо комнатная антенна, либо кусок провода произвольной длины, выкинутый в окно. В таких суррогатных антеннах большие величины ЭДС не наводятся, конечно, если кусок провода вдруг не оказался равным половине длины волны (например 20 метров на 7 Мгц диапазоне), либо за стеной не стучит морзянку вражеский шпион, но вероятность таких событий мне кажется не очень высокой. К тому же, у нас входе приемника стоит переменный резистор, включенный правда не совсем по учебнику, и предназначенный в большей степени для согласования произвольного волнового сопротивления нашего куска провода с, извините, характеристическим сопротивлением входных фильтров, но вполне справляющийся с функцией ослабления чрезмерно мощного входного сигнала.

Поедем дальше. Фильтры у нас пассивные, а смесители, давайте договоримся — с приличными динамическими характеристиками. Хорошо, выдохнули, перегружаться пока нечему. Теперь самое уязвимое, с точки зрения интермодуляционных искажений, место нашего радиоприемника — УПЧ, именно его в большинстве конструкций охватывают АРУ. Но ведь, если не задаваться целью получения от этого узла большого усиления, а сделать его, главным образом, ответственным за селективные свойства нашего аппарата, то и здесь никаких проблем не возникает.

Оппонент: Так какое усиление должен иметь УПЧ и, если, оно будет невелико, за счет чего мы обеспечим показатели чувствительности?

Автор: Навскидку его значение примем таким, чтобы общее усиление каскадов от антенного входа до выхода УПЧ было равно 10 по напряжению. Почему 10? А потому, что сигнал с выхода УПЧ уже не тот, что поступает на вход приемника, а узкополосный, тщательно отфильтрованный нашими входными и кварцевыми фильтрами и, даже, будучи усиленным в 10 раз, не создаст никаких проблем последующим каскадам.

Предположим, что мы хотим построить качественный радиоприемник в большом деревянном корпусе и ждем от него такого же звука, как от какого-нибудь легендарного лампового Грюндика. Это касается прежде всего УКВ ЧМ диапазона, поэтому каскад, ответственный за детектирование ЧМ сигнала должен быть продуман особенно щепетильно. Хотя и продумывать здесь ничего не надо, а надо просто впаять недорогую микросхему К174ХА6 (или какой-нибудь импортный аналог) по стандартной схеме включения и наслаждаться звуком приемника высшего класса.
Чувствительность К174ХА6 составляет 60-80 мкв, что в совокупности с усилением предыдущих каскадов, даст общую чувствительность устройства- 6-8 мкв. По-моему, вполне пристойно. К тому же, в подобных микросхемах, на входах стоят усилители-ограничители, которые делают амплитуду выходного сигнала независимой от уровня ВЧ сигнала, поэтому в данном диапазоне применение схемы АРУ будет абсолютно лишним.

Теперь, что касается SSB. Детектор SSB сигнала представляет собой, как правило, простой смеситель с переносом сигналов промежуточной частоты в область звуковых частот и усилитель звуковой частоты, коэффициент усиления которого, как и его шумовые характеристики, определяют чувствительность тракта. Такой усилитель легко реализовать на малошумящем операционном усилителе, а к нему уже, посредством присоединения двух диодов и полевого транзистора в режиме переменного резистора, добавить простейшую, но весьма эффективную схему АРУ.

Самая грустная песня связана с детектором АМ сигнала. Учебники учат нас, что для нормальной работы амплитудного детектора необходим могучий УПЧ с эффективной системой АРУ и обладающий коэффициентом усиления 80-120 дб. Именно коэффициент усиления такого УПЧ и определяет чувствительность приемника. Но мы ведь не относимся к тем, кто не ищет простых путей. А кто ищет — тот всегда найдет! (из «Песни о весёлом ветре»), а я бы добавил: И выпьет!
Америкашки все придумали за нас. Замечательная микросхема AD8307 представляет собой логарифмический усилитель и детектор в одном флаконе. Чувствительность такой микросхемы — около 40 мкв при динамическом диапазоне 92 dB, что в совокупности с усилением предыдущих каскадов, выдаст на-гора 4 мкв общей чувствительности.
Поскольку усилитель внутри этой микросхемы — логарифмический, ждать от этого АМ тракта хай-эндовского звучания не приходится, но поверьте, не дождетесь вы его на КВ диапазонах и от профессиональных приемников, сделанных по всем канонам жанра. Зато эта логарифмическая характеристика усилителя избавляет нас от необходимости применения системы АРУ.
Справедливости ради сообщу, что первым данную микросхему, предназначенную для контроля уровня ВЧ-сигнала в радиоприемном тракте, применил Нидерландский радиолюбитель Gert Baars в журнале Elektor Electronics 7-8/2009, а потом, в журнале Радиоконструктор 10/2009 оперативно подсуетился уже наш автор А. Иванов, за что ему большое человеческое спасибо.

Вот ведь, вроде бы простой вопрос про АРУ, а пришлось описать почти всю работу приемника.

Оппонент: Да, с этим более-менее понятно, а смесители, я так понимаю, будут двойными балансными на диодах. Их везде рекламируют как самые высокодинамичные и малошумящие. Видел много схем высококачественных приемников с использованием смесителей на диодах Шоттки. В Дагенах, по-моему, тоже такие стоят.

Автор: Ты прав, мой друг Горацио! — хотел бы воскликнуть я, но пока воздержусь. Диодные кольцевые, они же двойные балансные смесители всем хороши — и быстродействующи, и малошумящи, и любимы разработчиками, но в нашем случае не подходят, так как включают в себя широкополосные трансформаторы (ШПТ), в том числе и по входу. А по входу у нас стучится полоса радиочастот в диапазоне 100 кгц — 146 Мгц, в надежде быть обработанной нашим смесителем. Трансформатор с таким коэффициентом перекрытия по частоте не снился даже старику Рэду, при всей его любви к радиочастотной аппаратуре. Кстати, очень рекомендую всем радиолюбителям, независимо от уровня подготовки, ознакомиться с его книгой «Справочное пособие по высокочастотной схемотехнике», очень многие вопросы и утомительные обсуждения на форумах отпочкуются за ненадобностью.

Но, если не двойной балансный смеситель на диодах, то что еще нам может обеспечить высокие динамические характеристики без применения трансформаторов? Очень просто — двойной балансный смеситель на транзисторах, а конкретно микросхема фирмы Philips Semiconductors — SA612A. Голландский производитель постарался и выпустил для нас микросхему с динамическим диапазоном 85-90дб и диапазоном входных частот 0-500 Мгц, да еще и обладающую усилением в 17 дб. Ясен пень, необходимость ШПТ в таком смесителе отсутствует. Отличная микросхема и недорогая.

Оппонент: Это хорошо, что недорогая, но есть у меня еще вопрос по поводу входных диапазонных фильтров. Где-то их ставят, где-то нет, в приемнике «мирового уровня» их восемь штук. Есть ли смысл ставить эти фильтры в нашей схеме?

Автор: Смысл может быть и есть, но его так же мало, как крабов в крабовых палочках.
Хотя нет, был не прав, вспылил, считаю своё высказывание безобразной ошибкой.
Всё-таки не зря в очень дорогих моделях радиоприёмников эти фильтры присутствуют, причём часто делаются с возможностью отключения.
Возникают ситуации, когда они оказывают незаменимую помощь в отделении полезного сигнала от мощных внеполосных помех, но в рамках этой статьи мы не станем копать слишком глубоко, а рассудим также, как разработчики агрегатов средней ценовой категории.

Тут все просто, и много времени не займет.

Диапазонные фильтры необходимы в супергетеродинных приемниках с низкой промежуточной частотой для обеспечения мало-мальски приемлемой избирательности по зеркальному каналу (обычно 20-30 дб), а в приемниках прямого преобразования — для подавления побочных каналов приема на частотах, кратных частоте гетеродина.
А теперь внимательно смотрим на структурную схему нашего радиоприемника (рис.1) и видим — у нас не приемник прямого преобразования, не супергетеродинный приемник с низкой промежуточной частотой, не электрический чайник, а технически продвинутый агрегат, соответствующий последним веяниям супергетеродиностроения — с двойным преобразованием частоты и высокой первой промежуточной частотой. Да, у него как и любого супергетеродина есть зеркальные каналы приема, но частоты этих каналов разнесены между собой на очень большую величину, а именно на двойную величину промежуточной частоты.
То есть, если частота гетеродина, к примеру, равна 44 Мгц, наш первый смеситель, нагруженный полосовым фильтром 43 Мгц увидит входные частоты 44-43=1 Мгц и 44+43=87 Мгц по зеркальному каналу. Легко заметить, что скурпулезно рассчитанные переключаемые фильтры НЧ и ВЧ на входе приемника способны обеспечить избирательность по зеркальному каналу 70-80 дб.
Возникают у нас зеркалки и по второй ПЧ-10,7 Мгц. С ними успешно борется полосовой фильтр, настроенный на 43 Мгц, причем его не обязательно делать кварцевым, двух-трехзвенный фильтр на связанных резонансных контурах способен обеспечить величину избирательности по второй ПЧ порядка 60-70 дб.

Остается только добавить, что за избирательность по соседнему каналу отвечают кварцевые или пьезокерамические переключаемые фильтры на 10,7 Мгц, имеющие на каждый вид модуляции свою полосу пропускания (для широкополосной УКВ ЧМ модуляции- стандартные с полосой около 100 кгц, для АМ- 10-16 кгц, для SSB- 3 кгц). В принципе, для SSB модуляции можно отказаться от применения узкополосного фильтра, а использовать уже имеющийся более широкополосный, применяемый для АМ. В этом случае после УНЧ в SSB детекторе необходимо предусмотреть ФНЧ с частотой пропускания около 3000 кгц. Порядок этого фильтра и будет определять избирательность приемника по соседнему каналу в режиме SSB.

Оппонент: И какая это будет величина избирательности? А еще, как влияют параметры генератора плавного диапазона на параметры всей схемы? И какой мы будем делать ГПД, аналоговый как в приемнике «мирового уровня», или синтезатор на микропроцессоре?

Автор: По поводу избирательности: 12 дб для фильтра 2-го порядка, 24 дб для фильтра 4-го порядка и т.д.- по 6 децибел на каждую прибавку порядка фильтра.
По поводу генератора плавного диапазона в двух словах не расскажешь, разговор будет взрослый, а я вижу тоскливую усталость во взгляде собеседника.

Оппонент: Да уж, не мешало бы переварить информацию.

Автор: Давайте переваривать, мы здесь не шутки шутим, диарея головного мозга нам ни к чему. А на следующей странице мы закончим с описанием структурной схемы и начнем постепенно уточнять формы и контуры нашей конструкции.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector