4h4-auto.ru

4х4 Авто
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Датчик регулировки подачи топлива

Датчик регулировки подачи топлива

Устройство и способы проверки

Эти насосы являются одними из первых разработок Боша в ряду распределительных ТНВД.

Данная статья не является истиной в последней инстанции. Скорее, делюсь опытом по проверке автомобилей с этим ТНВД.

Сталкиваюсь с этими насосами на протяжении последних лет 15. До сих пор вызывают сложности в диагностике (нахождению дефектов). Ну что же, попробуем разобраться с этими «зверушками» и методами их «приручения».

Начнем с устройства и логики их работы. Кому-то это покажется скучным, но обучение автомобильных диагностов я начинаю именно с этого – «Пойми логику работы и сделай все качественно!».

Инструкций ведь на всю оставшуюся жизнь не напасешься, и всех дефектов не предусмотришь…

Опуская основы теории впрыска, отмечу основные требования, предъявляемые к системам дизельного впрыска:

1.Точное дозирование топлива (цикловая подача)

2 Точный момент впрыска (Угол опережения впрыска – УОВ)

Способы регулирования цикловой подачей.

В данных насосах реализован способ управления цикловой подачей путем перемещения регулирующей кромки (в обиходе называемой втулкой).

1. Плунжер на такте всасывания топлива:

Плунжер движется влево, открыт канал поступления топлива. Канал подвода топлива к форсункам перекрыт.

2. Конец всасывания, начало нагнетания.

Плунжер поворачиваясь, перекрывает канал поступления топлива. Одновременно открывается канал подачи топлива к форсункам. Плунжер находиться в исходном положении.

3. Начало подачи:

Плунжер начинает движение вправо. Канал поступления топлива закрыт.

Канал подачи топлива к форсункам открыт. При достижении определенного давления в нагнетательном тракте форсунка открывается – начинается впрыск.

1..Давление в подплунжерном пространстве нарастает плавно от «0» до максимального значения. Не является, какой то постоянной величиной. Вот почему при максимальном давлении плунжера в этих насосах до 1000 bar , среднее эффективное давление едва дотягивает до 500 bar.

2.Начало впрыска определяется:

2а. Началом движения плунжера. Начальная выставка ТНВД, положение волновой шайбы.

2б. Давлением открытия форсунки.

Блок управления начало впрыска не контролирует! Применение датчика положения ротора ТНВД спасает положение. Правда, не учитывается задержка впрыска. Положение спасает датчик подъема иглы форсунки.

4. Конец впрыска:

Регулирующая кромка (втулка) сбрасывает давление в подплунжерном пространстве в полость насоса. Давление в нагнетательном тракте падает, форсунка закрывается. Происходит конец впрыска. Положение регулирующей втулки (кромки) задает блок управления.

Начало впрыска задается:

-Положением оликового кольца относительно вала (кулачковой шайбы)

-Начальной выставкой ТНВД

2..Конец впрыска задается положением регулирующей кромки (втулки).

3. УОВ (Угол Опережения Впрыска) блок управления задает только лишь положением кулачковой шайбы. Предварительная выставка ТНВД не учитывается. Так же не учитывается время задержки впрыска (если нет датчика подъема иглы) и давление открытия форсунки.

4.Цикловая подача регулируется только временем сброса давления в полость ТНВД путем перемещения регулирующей кромки (втулки). Начало подачи блоком не контролируется. Контролируется только конец подачи.

По принципам действия насосы Бош, Дэнсо, Дэлфай и пр. – однотипны.

Различия – только в конструктивных исполнениях.

Регулирующая втулка смещается при помощи исполнительного механизма

При отсутствии напряжения на обмотке под действием пружины (на рисунке не показана) ротор находиться в начальном положении. Втулка находиться в нулевой подаче. При подаче напряжения в обмотку ротор проворачивается, и через вал с рычагом (привод) сдвигает регулирующую втулку в сторону максимальной подачи.

Но нам нужны не только нулевые и максимальные подачи! Как поставить ротор в промежуточное положение? Управление исполнительным механизмом осуществляется широтно-импульсной модуляцией (ШИМ). Напряжение на обмотке имеет следующий вид:

Как видим, период следования импульсов Т не меняется. А вот ширина импульса Ти имеет разную величину. Под действием этого напряжения ротор начинает вращение в сторону максимального поворота. Но тут импульс пропадает – ротор возвращается в сторону нулевого поворота. Частота следования импульсов выбирается достаточно большой (до 10 кГц) – ротор не успевает пройти от одного крайнего положения до другого. Занимает, какое то положение, определяемое шириной импульсов по отношению к периоду их следования (скважность импульсов). Подключив осциллограф на вход обмотки, мы увидим именно такие импульсы. В зависимости от необходимой цикловой подачи, меняется ширина импульсов при неизменном периоде их следования.

По показаниям различных датчиков блок управления рассчитывает скважность импульсов на обмотку. Но обмотки бывают разными, да и жесткость возвратной пружины может быть разной. Плюс всякие разные возмущающие факторы. Ротор может занять совершенно нерасчетное положение. А ведь его положение напрямую определяет точность цикловой подачи. Как быть?

Положение может спасти только датчик положения ротора (регулирующей втулки). Система управления становиться замкнутой системой с обратной связью:

Блок управления изменяет скважность импульсов до тех пор, пока ротор по показаниям датчика не займет расчетное положение. В качестве датчика положения ротора первоначально использовался обычный потенциометрический датчик. Но у них есть один недостаток – износ дорожки. Начинал давать неверные показания о реальном положении регулирующей втулки. Со всеми вытекающими весьма грустными последствиями. Поэтому в дальнейшем был применен полудифференциальный датчик с замыкающим кольцом.

ЭБУ подает опорный сигнал на катушку подмагничивания (опорную катушку). Частота порядка 10 кГц. Короткозамкнутые медные кольца экранируют создаваемое магнитное поле. Меняя их положение, производим первоначальную калибровку датчика (регулировку начальной точки и крутизны характеристики). Переменное магнитное поле наводит в измерительной катушке сигнал переменного напряжения. Поле в ней экранируется измерительным кольцом, соединенным с валом регулятора. Таким образом, напряжение, наводимое в измерительной катушке, зависит от положения ротора (положения регулирующей втулки). Так как обе катушки идентичны – происходит температурная компенсация, и устраняются другие возмущающие факторы. Применение данной схемы позволило более точно определять положение регулирующей втулки по сравнению с резистивной схемой. Да и надежность выше – нет трущихся деталей.

Читайте так же:
Регулировка регулятора холостого хода на нексии

Ну что же, точность регулирования мы повысили. Далее вспоминаем, что цикловая подача напрямую зависит от плотности топлива. Более горячая солярка имеет меньшую плотность – цикловая подача уменьшается. Более холодная имеет большую плотность – при прочих равных условиях цикловая подача увеличивается. Для корректировки этого параметра ставим датчик температуры топлива. Схема крышки ТНВД приобретает следующий вид:

Катушка подмагничивания (опорная катушка)

Обмотка исполнительного механизма

С логикой регулирования цикловой подачей мы разобрались.

Пора приступать к: проверкам.

Проверка системы цикловой подачи.

Перед нами Фольцваген Каравелла (Транспортер). 2004 года рождения, ТНВД распределительного типа с регулирующей втулкой. Производство — Бош.

Жалобы клиента – не заводится. Вечером поставил на стоянку — с утра не завелся.

По характеру прокрутки стартером версию неисправности двигателя пока отбрасываем.

Приоткручиваем трубку, идущую к форсунке. Крутим стартером. Топливо не поступает.

В дизелях с электронной системой управления отсутствие цикловой подачи может вызываться:

1 Неисправность ТНВД

2.Отсутствие управления с ЭБУ

Проверку начинаем именно с этого. Что плохо — электроника или механика?

Подключаем осциллограф к входу исполнительного механизма. На данной модели разъем ТНВД находиться в очень труднодоступном месте, поэтому подключаемся к выходу ЭБУ. Теряем информацию о целостности проводки – ничего, ее проверим потом. Должны увидеть импульсы, указанные выше.

Изменение скважности (ширины импульсов) не всегда удобно смотреть осциллографом. Берем в руки обычный тестер. Это инерционный прибор – показывает усредненное напряжение на обмотку. А ведь именно это нам нужно!

Фото не выкладываю – ТНВД расположен крайне неудобно – занимаемся безразборной диагностикой.

Итак, включаем зажигание. ТНВД находиться в нулевой подаче – тестер показывает «0». Скважность равна «0». Затем он переходит в подачу холостого хода. – тестер показывает небольшое напряжение. Сканер в потоке данных в это время показывает степень смещения втулки порядка 10%. Через 4 сек. ЭБУ снова переводит ТНВД в нулевую подачу. Тестер показывает 0 , сканер – 0%. Нажимаем на стартер. – ТНВД должен перейти в максимальную подачу. Видим: Тестер: Порядка 12 вольт. Сканер: Около 100% (двигатель холодный)

Вывод: Система электронного управления (EDC) исправна. Проблемы с ТНВД.

1.Проблемы с плунжером.

2.Проблемы с исполнительным механизмом (крышкой).

Проверяем п.2. Раньше мы всегда снимали верхнюю крышку и визуально смотрели положение ротора. На этой модели снять ее – много времени займет.

А я,лентяй – не хочу делать ненужную работу!

Подключаем осциллограф к опорной катушке. Видим синусоидальный сигнал с частотой порядка 10 кГц и амплитудой около 3 вольт (на других моделях эти параметры могут отличаться от указанных). Подключаем осциллограф к измерительной катушке датчика положения ротора. Цифровые осциллографы не всегда корректно работают на этой частоте – я пользуюсь электронно-лучевым. Видим синусоидальный сигнал небольшой амплитуды. Подаем 12 вольт на обмотку. Слышен отчетливый щелчок (это шайба переместилась в максимальную подачу). Сигнал на измерительной катушке резко возрастает.

Вывод: Крышка исправна. Ротор проворачивается, датчик исправен.

Ну, тогда «Трэба плунжер менять!».

С выводами не торопимся. Помним – плунжер без давления подкачки не работает! Проверяем. Подключаем манометр к обратке – на этих моделях насосов это самый простой способ.

Давление при работе стартера – порядка 1 bar. Видим «0». Отказ подкачивающего насоса (расположен внутри ТНВД)? Меняем ТНВД? С выводами не торопимся.

А солярка там вообще есть? Подключаем прозрачную трубку на подачу и на обратку. Движения топлива в подаче не видим, на выходе – чистый воздух. Завоздушенный ТНВД!

В отличие от японских автомобилей, помпа ручной подкачки на немецких автомобилях, как правило, отсутствует. Как прокачать пустой ТНВД? Мануалы молчат…

«Дедушкин» способ: откручиваем обратку, подаем небольшое давление воздуха от пневмомагистрали в бак. Ждем появление топлива из обратки. Риск: подав большое давление, можем повредить бак. Подав малое давление – результата не добьемся.

Берем пластиковую бутылку из-под Кока-Колы. Заполняем топливом. В пробку вставляем трубку, подсоединяем к подаче. Вешаем под капотом – топливо идет самотеком. Сжимая бутылку руками, помогаем прокачке.

И вот чудо! Из линии обратного слива потекло топливо. Нажимаем на стартер – автомобиль заводиться с пол-оборота.

Автомобиль завели – осталось найти причину завоздушивания. Опускаю подробности поиска, скажу — причина была в построении линии обратного слива от форсунок.

Принципиально у форсунок бываю либо одна, либо две трубки обратного слива.

Первую схему предпочитают применять японские автомобили. Вторую – немецкие.

Причина более чем банальна — слетела заглушка. Автомобиль на ночь был поставлен на пригорке (под наклоном) – топливо через обратный слив (оказался ниже уровня ТНВД) вытекло.

Ставим заглушку, закрываем капот. Найден дефект и причина его возникновения.

Способы проверки УОВ будут рассмотрены в последующих статьях

Продолжение следует

В статье использованы рисунки из официальных источников Бош, выложенных для свободного обращения и авторские рисунки

Сколько стоит регулятор давления топлива ваз 2114

Различают два варианта РДТ – механического и электрического типа. Первые устроены как клапаны сброса (вакуумного типа), пропускающие назад лишнее топливо при высоком давлении. Второй вариант – это датчик давления, передающий блоку управления информацию.

Сегодня в авто регулятор давления расположен в одной из двух локаций:

  • Топливная рампа. Узел подключают к впускной и выпускной магистрали. По первой подается бензин/дизель из бака, по второй сливается лишнее топливо – таким путем получают в топливной рампе низкое давление.
  • В баке на насосном модуле. Топливо, имея установленную компрессию, попадает в мотор, без применения дополнительного шланга. Бензин/дизтопливо, при таком расположении, сбрасываемое в бак, не нагревается.
Читайте так же:
Cat c15 регулировка клапанов

Регулятор состоит из:

  1. Корпуса. Он сделан из металла. Прочен и герметичен. Это предотвращает утечку горючего и падение давления.
  2. Мембраны. При высоком давлении приоткрывает магистраль для слива топлива.
  3. Обратного клапана. Стоит на входе устройства.
  4. Пружины. Она давит на диафрагму клапана.
  5. Штуцеры. Крепят магистрали впуска-выпуска топлива.
  6. Уплотнительные элементы. Отвечают за герметичность.

На заметку! Механический регулятор работает за счет разницы давлений. В ряде систем вместо РДТ используют электромагнитный клапан, управляемый ЭБУ мотора.

Механический РДТ – это, клапан, на который с разных сторон оказывает давление топливо и пружина. Если обороты низкие, клапан, открывшись, позволяет топливу слиться в бак. Затем включается насос, перекачивающий горючее через фильтр.

Расположение регулятора в ваз 2114

Замена регулятора

Снимается регулятор только при холодном моторе. При нахождении мотора в состоянии работы, внутри сохраняется топливное давление, поэтому до начала процедуры замены показатели напора нужно понижать.

Замена регулятора давления топлива ваз 2114

  1. Открепляется клемма провода « — » от аккумулятора.
  2. Снимается вакуумный шланг.
  3. Снимаем гайки сливной трубки, аккуратно понижая уровень давления. В период проведения процедуры придерживайте штуцер шланга.
  4. Скрепляем шайбу и трубочку посредством кольца из резины.
  5. Отсоединяем винт, крепящий прижимную планку, и убираем ее.
  6. Немного откручиваем гайку, держащую регулятор и трубку слива.
  7. Отсоединяем винты крепящие регулятор к рампе.
  8. Осторожно отсоединяем гайку, и регулятор снимаем с рампы.
  9. Крепим регулятор таким же методом, но в другом порядке.

Важно, при неработающем двигателе, включенном зажигании и работающем электрическом бензонасосе топливное давление в форсунках должно колебаться в районе 300кПА. Если уровень ниже обозначенного, существует возможность нарушения функции, всей системы питания мотора.

Функции

РДТ – элемент топливной системы (далее ТС), отвечающий за уровень давления горючего, определяемое режимом работы автомобильного двигателя. РДТ используют в моторах инжекторного типа, для которых важна точность параметров при впрыске топлива.

Цель узла – поддерживать давление горючего путем регулирования подачи топлива в цилиндры, благодаря которому обеспечивается оптимальная работа форсунок.

При неисправном РДТ возрастает время разгона и даже снижается мощность мотора. Если объем воздуха из коллектора, остается стабильным, а количество топлива растет, то топливо-воздушная смесь либо не воспламеняется, либо сгорает не на 100%.

Датчик давления топлива ВАЗ 2114

Замер текущего топливного напора осуществляется при помощи датчика давления. Он необходим для осуществления контрольных функций прямого впрыска на бензиновых двигателях. Местом его установки является рампа топливная.

Использование датчика помогает поддержать напор системы впрыска, играющего важную роль при поддержании необходимой мощности, понижения уровня вредных выбросов и снижение шумового показателя в период нахождения двигателя в рабочем состоянии.

Для некоторых систем устанавливают два датчика, один на высокое давление, другой на низкое давление.

Если датчик неисправен, система управления применяет обычные показатели давления, но мощность мотора понижается.

Причины неисправностей

Существует не так уж много причин, по которым регулятор подачи топлива выходит из строя. Элемент нельзя назвать сверхнадежным, работает он, как говорится на износ, и очень зависим от качества топлива.

  1. Брак. Нечастая причина, но иногда попадаются бракованные изделия от отечественных автопроизводителей. Рекомендуется проверка запчасти перед покупкой.
  2. Износ. Обычно наблюдается после 100-200 тыс. км пробега. В регуляторе мембрана становится менее эластичной, клапан регулировки давления подклинивает, слабее пружина.
  3. Плохое топливо. Топливо для бензинового и дизельного автомобильного двигателя часто содержит слишком много влаги, мусор, посторонние токсины. Вода в топливе – причина ржавления металлических частей регулятора. Увеличиваясь со временем, они препятствуют его нормальному функционированию, приводят к ослабеванию пружины.
  4. Забился топливный фильтр. Мусорные фракции в топливе засоряют систему, в том числе и РДТ, засоряется. Это приводит к износу пружины и подклиниванию клапана.

На заметку! РДТ обычно не ремонтируют, а заменяют новым. Но, если причина поломки – засорение, его можно прочистить.

Варианты поломок

Регулятор – несложное с технической точки зрения устройство, поэтому поломок, которые могут с ним случиться немного. Почти во всех случаях рекомендуется заменить РДТ.

Что может сломаться:

  1. Пружина. Это главная поломка в РДТ. Из-за ослабления пружины развивается «голодание» мотора, не хватает топлива на повышенных оборотах, при нажатии сцепления и во время переходных режимов.
  2. Загрязнение. При засорении теряется способность пропускать горючее. Двигатель останавливается на любых режимах работы. Если РДТ сильно загрязнен, давление в ТС резко подскакивает, и через уплотнительные материал вытекает топливо. Проблему решают путем закачки большого количества топлива бензонасосом.
  3. Заклинило. РДТ в рампе может периодически заклинивать. Автомобиль подергивается.

Симптомы поломок

Зная признаки неисправности регулятора ДТ, можно сразу определить уровень проблемы – полностью узел, механический или электронный, вышел из строя или частично. Но все нижеперечисленные «симптомы» не дифференцируют поломку регулятора от других неисправностей – они могут указывать также на поломку топливного насоса или на засор фильтра.

Признаки поломки РДТ одинаковы для бензиновых и дизельных моторов одинаковы:

  1. Двигатель не запускается. Стартер долго крутится при нажатой педали сцепления.
  2. Мотор заглох на холостом ходу. Чтобы поддерживать его работу приходится все время давить на педаль газа. Второй вариант – нестабильность оборотов, ведущие к остановке двигателя.
  3. Теряется мощность. Автомобиль не может заехать на гору, не справляется с грузом. Попросту говоря «не тянет».
  4. Топливо расходуется больше нормы. Потери зависят от нюансов неисправности.
  5. Из шлангов подтекает топливо. Причем замена шлангов или хомутов, а также прочих близко расположенных элементов, не помогает.
Читайте так же:
Регулировка передних дисковых тормозов на скутере

Если появился хоть один симптом, нужна диагностика.

В новых авто регулятором служит датчик давления топлива в рампе. Если он выйдет из строя, в памяти ЭБУ возникает ошибка, и загорается светодиод, сигнализирующий о поломке мотора.

На заметку! Ошибки, касающиеся РДТ идут под №№ p2293 и p0089 – «механическая неисправность» и «регулятор неисправен» соответственно.

Диагностика

Есть ряд методов диагностики состояния. Все они несложные, с ними может справиться даже начинающий автолюбитель.

  1. Визуально. Это вариант для карбюраторных моторов. Пережмите клапан или отсоедините его. От того, насколько интенсивен поток топлива, можно судить о неисправности. Способ прост, но неточен.
  2. Манометром. Установите прибор между штуцером и шлангом, временно отсоединив вакуумный шланг. На манометре показатель должен подняться до 0,7 Бар.
  3. Пережатием шланга. Проверьте РДТ пережатием обратной магистрали. Манометр должен сразу прореагировать. Если двигатель не набирает обороты, регулятор неисправен. Запустите мотор, пережав обратную магистраль. Следите за оборотами и прислушайтесь к его работе. Если его работа равномерная, неисправен клапан регулировки – его надо заменить.

Порядок проверки работоспособности РДТ зависит от его вида – механические и электрические узлы проверяют по-разному.

Как проверить механический регулятор:

  • найдите под капотом шланг возвратной подачи топлива;
  • запустите мотор – пусть поработает минуту, чтобы немного нагрелся;
  • плоскогубцами – очень аккуратно, пережмите шланг обратного хода;
  • если после пережатия двигатель стал хорошо работать, значит, проблема в поломке РДТ.

Шланги пережимать на долгое время запрещается – это создает дополнительную нагрузку на насос, что приводит в будущем к его поломке.

В инжекторных моторах топливные шланги сделаны из металла, а не из резины – для повышения надежности. Электрические датчики в таких системах сделаны на базе тензорезисторов. Для определения неисправности РДТ на инжекторе, проверяют напряжение на выходе датчика.

В дизелях РДТ проверяют, измеряя сопротивление катушки индуктивности датчика. Обычно нормальное значение составляет около 8 Ом. Если сопротивление заметно превышает, или наоборот гораздо ниже заявленного, регулятор поломался. Подробную диагностику проводят только в сервисе – на специальных стендах, где проверяют датчики и всю систему топливного обеспечения.

Подготовительные работы

  1. Берём заранее подготовленный манометр, и для предотвращения разлива топлива и пропуска воздуха наматываем на наконечник лён или ленту фум.
  2. Готовим шланг с максимальным внутренним диаметром 9 миллиметров, а для их крепления понадобятся хомуты.
  3. Приготовленную ветошь складываем на двигатель таким образом, чтобы зафиксированный на ней шланг с манометром не смогли скатиться с поверхности. Делается это для того, чтобы излишки топлива не разлились по поверхности мотора.
  4. На манометр наматываем лён или ленту, после чего фиксируем на нём шланг и затягиваем всё хомутом.
  5. На рампе откручиваем золотник с ниппеля (при этом возможен брызг топлива из-за наличия остаточного давления – прим.).

Пригодился обычный колпачок от колеса.

Манометр с патрубком в сборе.

Укладываем манометр на заранее подготовленную ветошь, и подготовительные работы на этом можно считать оконченными.

Порядок замера

Перед тем как приступить к работе, можно попробовать сбросить давление в топливной системе. Для этого снимаем предохранитель бензонасоса (который находится в правой части панели, под левой ногой переднего пассажира – прим.). Там, где расположены 3 реле и 3 предохранителя. Ниже на фото он расположен под цифрой «5». После демонтажа предохранителя, включаем зажигание, проверяем на слух, что бензонасос не качает. Заводим автомобиль и ждём, когда двигатель заглохнет.

  1. После того как всё готово, уже надетый конец манометра с шлангом проверяем на надёжность соединения.
  2. Далее, заводим двигатель и смотрим на появившиеся показания.

Таким образом, появившиеся результаты диагностируем, и сравниваем с результатами нормы.

После проведения всех работ, откручиваем шланг с манометром, вкручиваем золотник и приводим всё в изначальное состояние.

Обратите внимание!

Особенность измерения давления при помощи манометра такая, что его изначальное значение на шкале имеет определённую неточность. То есть, когда воздушный аналог имеет период измерения в 15-20 атмосфер, а для контроля топлива необходимое максимальное значение равно 5-7 атмосферам, то все проводимые замеры будут иметь погрешность равную начальным значениям на приборе. Поэтому проверку давления следует проводить на манометре, имеющим максимальные значения до 8-ми атмосфер.

Меряем давление в системе без обратного клапана

Если произошло так, что на вашем двигателе отсутствует обратный клапан, то вам необходимо знать, что в такой рампе присутствует постоянное давление от 3,6 до 4,0 атмосфер. Но порядок замеров в целом полностью схож с тем, что описан выше.

Датчик регулировки подачи топлива

Главная Судовые двигатели внутреннего сгорания Испытания и эксплуатация судовых двигателей Проверка и регулировка топливных насосов в двигателе

Проверка и регулировка топливных насосов в двигателе

Топливные насосы дизе­лей обеспечивают подачу топлива к форсункам под высоким давлением в определенный промежуток времени по ходу рабочего цикла и в точно отмеренном количестве.

Форсунки, пропуская через сопловые каналы это топливо в камеры сгорания рабочих цилиндров, обеспечивают его распыливание и определен­ную направленность факелов.

Иное распределение рабочих функций между топливным насосом и форсункой имеется только в аккумуляторных топливоподающих системах.

Указанные выше рабочие функции топливного насоса определяют не­обходимые виды его проверки и регулировки.

Читайте так же:
Регулировка кулисы вольво 460

Необходимость периодической проверки и регулировки топливных на­сосов вызывается тем, что вследствие износа отдельных деталей в процес­се длительной эксплуатации рабочие показатели и регулировка топливных насосов изменяются. Кроме того, проверка и регулировка насосов необхо­димы после их разборки, замены отдельных деталей, а также после разбор­ки механизмов их привода и управления топливоподачей.

Топливные насосы проверяют на герметичность (плотность) соединения деталей, проверяют и регулируют дозировку топлива, подаваемого в от­дельные цилиндры, при номинальной и нулевой подачах, проверяют и ре­гулируют углы опережения подачи топлива.

Указанные способы проверки и регулировки зависят от конструктив­ных особенностей проверяемых насосов и механизма их привода; примени­тельно к конкретному типу дизеля они указываются в руководстве по его эксплуатации.

Ниже рассмотрим только основные, наиболее типичные способы вы­полнения работ.

Величина создаваемого насосом давления и точность отмеряемых им доз топлива зависят главным образом от плотности плунжерной пары.

Проверка плотности плунжер­ной пары может быть произведена:

а) по величине наибольшего давления, создаваемого насосом;

б) методом опрессовки;

в) по количеству утечного топ­лива.

В эксплуатационных условиях обычно применяют первые два спо­соба.

Для проверки первым спосо­бом необходимо иметь максиметр или, взамен его, для грубой оцен­ки плотности — эталонную форсун­ку с увеличенным в 1,5 раза дав­лением открытия иглы.

Вторым, более распространенным способом плотность плунжерной пары проверяют так:

1) отсоединяют нагнетательную трубку и удаляют нагнетательный клапан;

2) к нагнетательному штуцеру присоединяют манометр со шкалой не менее 300 кГ/см 2 (рис. 208).

Перед окончательной затяжкой соединительной гайки удаляют воздух из соединения.

3. Установив рейкой или другим регулирующим органом насоса пол­ную рабочую подачу, создают контрольное давление (200—300 кГ/см 2 ) с помощью рычага ручной прокачки.

При динамическом способе опрессовки создают указанное давление и измеряют время, в течение которого удается его удержать, поджимая плун­жер до момента отсечки.

При статическом способе опрессовки также создают контрольное дав­ление, но измеряют время, за которое давление снизится на 50 или 100 кГ/см 2 при неподвижном плунжере.

Нормы времени для оценки плотности плунжерной пары конкретных типов топливных насосов устанавливают опытным путем, опрессовывая указанным способом исправные и изношенные топливные насосы.

Величина времени опрессовки зависит от вязкости применяемого топ­лива, его температуры и соотношения размеров плунжерной пары и конт­рольного манометра. С помощью большого манометра плотность малых плунжерных пар проверить данным способом невозможно.

При отсутствии на теплоходе подходящего манометра плунжерные пары топливных насосов можно опрессовать для оценки их плотности при помощи глухой гайки (заглушки) для нагнетательного штуцера насоса.

Для этого также удаляется нагнетательный клапан и воздух, а затем гайкой заглушается нагнетательный штуцер. Далее, установив половинную или полную рабочую подачу регулирующим органом насоса, нажимают с оп­ределенной, постоянной силой на рычаг ручной прокачки и замечают вре­мя, необходимое для перемещения плунжера от крайнего нижнего положе­ния до начала отсечки. Начало отсечки обнаруживается по резкому умень­шению сопротивления движению рычага.

Точность проверки таким способом зависит от величины и постоянства действующего на рычаг усилия. Поэтому лучше производить данную про­верку с помощью груза (рис. 209). При этом возможно определить созда­ваемое плунжером контроль­ное давление р т :

Норма контрольного вре­мени также устанавливается опытным путем.

Плунжерные пары, даю­щие неудовлетворительные результаты при проверке на плотность необходимо заме­нять.

Проверка плотности наг­нетательного клапана насоса производится также опрессованием с помощью маномет­ра. Для этого из насоса уда­ляют воздух, плотно к наг­нетательному штуцеру при­соединяют манометр, создают ручной прокачкой давление 150—200 кГ/см 2 и, опустив плунжер в нижнее положение, измеряют время, за которое давление снизится на 50 кГ/см 2 . Контрольная норма времени оп­ределяется опытным путем.

Проверку угла опережения подачи топлива насосом производят раз­личными способами: по совмещению специальных контрольных рисок, по вы­теканию струи топлива из нагнетательного штуцера насоса при снятом кла­пане (для золотниковых насосов) и «по мениску».

Наиболее распространенный способ проверки угла «по мениску» тре­бует несложного приспособления, состоящего из кусочка нагнетательной трубки с гайкой и ниппелем для присоединения к нагнетательному штуцеру проверяемого насоса, резиновой и стеклянной трубочек (рис. 210).

На дизелях с одно- и двухсекционными топливными насосами, при на­личии индикаторных кранов и термометров на выпускных патрубках, эту регулировку лучше производить при работе двигателя на номинальной мощности, контролируя равномерность загрузки отдельных цилиндров по температуре отработавших газов t г , выходящих из них, и по величине р z , определенной по снятой «гребенке». При этом контролируется и давление сжатия р с . Регулировку можно выполнить и пиметром; допустимое рас­хождение в его показаниях на отдельных цилиндрах должно быть менее 5% .

Допустимое расхождение в величине t т и р г отдельных цилиндров обычно указывается в руководстве по эксплуатации дизеля.

Равномерности дозировки топлива отдельными секциями в блочных топливных насосах золотникового типа достигают индивидуальным пово­ротом в ту или другую сторону отдельных плунжеров при ослабленном зуб­чатом хомуте, связанном с общей зубчатой рейкой насоса.

В системах управления топливоподачей при односекционных топлив­ных насосах на дизеле предусмотрены обычно в соединении общей управ­ляющей тяги или валика с регулирующими органами отдельных насосов специальные болты или талрепы, с помощью которых можно изменить ко­личество подаваемого в отдельные цилиндры топлива.

В насосах с отсечными клапанами индивидуальная регулировка коли­чества подаваемого топлива достигается изменением величины зазора в при­воде к отсечному клапану.

В завершение регулировки отдельных топливных насосов или секций необходимо проверить топливоподающую систему двигателя на «нулевую подачу».

Данная проверка гарантирует остановку двигателя при установке ру­коятки поста управления двигателем в положение «стоп».

Читайте так же:
Волга 3110 402 двигатель регулировка зажигания

Эта проверка состоит в том, что при нахождении рукоятки управления в положении «стоп» путем ручной прокачки убеждаются, что ни один из насосов не создает давления перед форсункой.

Система питания (топливная система) двигателя (K4J, K7J)

Рено Симбол. Система питания (топливная система) двигателя (K4J, K7J)

Топливная система. 1 — Топливный фильтр, 2 — Топливный бак, 3 — Топливозаливной трубопровод,

4 — Накладка топливозаливной горловины, 5 — Топливный насос в сборе.

Схема контура управления составом топливовоздушной смеси: 1 — форсунка; 2 — выпускной коллектор; 3 — управляющий датчик концентрации кислорода в отработавших газах (лямбда-зонд); 4 — двигатель; 5 — электронный блок управления двигателем; 6 — каталитический нейтрализатор отработавших газов

Система питания включает в себя топливный бак, расположенный в задней части автомобиля, электрический топливный насос, встроенный в бак (погруженный в топливо), топливный фильтр и систему трубопроводов. В систему также входят электронный блок управления (ЭБУ), различные датчики, узлы и электропроводка системы впрыска топлива.
Топливный насос подает под давлением топливо к топливораспределительной рампе, которая служит резервуаром для установленных на каждом цилиндре форсунок, впрыскивающих топливо во впускные тракты.
Двигатель оснащен системой впрыска топлива Siemens-Sirius. Это распределенный впрыск, осуществляющий подачу топлива в соответствии с порядком работы цилиндров в момент начала такта впуска.
Для получения информации о том, какой из цилиндров находится в данный момент в такте впуска, ЭБУ использует единый датчик ВМТ и скорости вращения двигателя, который определяет:
– ВМТ поршней первого и четвертого цилиндров;
– ВМТ поршней второго и третьего цилиндров.
Система включает в себя два датчика концентрации кислорода в отработавших газах, один из которых установлен до каталитического нейтрализатора, а второй – после него. Сигналы от датчиков информируют ЭБУ об отклонении от нормального процесса сгорания смеси в цилиндрах и служат для корректировки этого процесса с целью оптимизации работы двигателя.
Датчик температуры охлаждающей жидкости информирует ЭБУ о тепловом состоянии двигателя.
Воздух поступает в систему через глушитель шума впуска, присоединенный к воздушному фильтру. Датчик температуры поступающего в двигатель воздуха сообщает ЭБУ о температуре воздуха, проходящего через дроссельную заслонку.
Датчик положения коленчатого вала информирует ЭБУ о частоте вращения двигателя и положении поршней в цилиндрах.
Датчик детонации сообщает ЭБУ об отклонении в процессе сгорания топлива, сопровождающемся детонацией в цилиндрах. Изменение нагрузки двигателя передается ЭБУ датчиком давления, установленным во впускном коллекторе.
ЭБУ управляет частотой вращения холостого хода двигателя посредством регулятора холостого хода (шаговый электродвигатель), который установлен на корпусе дроссельной заслонки. Регулятор руководит открытием обходного канала воздуха, минуя дроссельную заслонку. Если дроссельная заслонка закрыта (педаль подачи топлива освобождена), ЭБУ дает команду регулятору управлять поступлением воздуха в двигатель, таким образом регулируя обороты холостого хода.
Установленный на педали акселератора потенциометр сообщает ЭБУ о положении дроссельной заслонки в каждый конкретный момент работы двигателя.
Для коррекции частоты вращения холостого хода при включении дополнительной нагрузки (кондиционера, насоса гидроусилителя руля) предназначен датчик, посредством которого ЭБУ повышает частоту вращения холостого хода, препятствуя тем самым остановке двигателя.
Для улучшения экологичности двигателя и повышения его экономичности служит система улавливания (адсорбирования) топливных паров с последующим их дожиганием в цилиндрах двигателя. Клапан рециркуляции этой системы также управляется ЭБУ.
При получении от датчиков информации о нештатной ситуации ЭБУ перестраивается на резервный режим управления двигателем. В этом случае ЭБУ игнорирует нештатные сигналы и, используя остальные сигналы, выдает команды на продолжение работы двигателя, хотя и со снижением топливной экономичности и динамики. При этом на панели приборов загорается предупреждающий сигнал и в память ЭБУ заносится соответствующий код неисправности.
В систему встроен инерционный датчик отключения подачи топлива, срабатывающий при ударе в случае дорожно-транспортного происшествия. Датчик останавливает работу топливного насоса, препятствуя вытеканию бензина при повреждении топливопроводов.
Система зажигания работает совместно с системой впрыска топлива по командам ЭБУ.

Регулятор давления топлива

Регулятор давления топлива (4) установлен в баке в узле топливный насос/датчик уровня топлива.

Проверка давления топлива

Манометр со шлангом и уплотнениями. Mot. 1311-01

Переходник. Mot. 1311-08

1. Снимите защиту топливного коллектора.

2. Отверните болт (1) крепления шланга подвода топлива.

3. На место шланга установите переходник (тройник) Mot. 1311-08.

4. Подсоедините к переходнику манометр Mot. 1311-01 и шланг подвода топлива (1).

5. Запустите двигатель.

6. После стабилизации давления топлива считайте показания манометра.

Для контура с возвратом. 3,5 ±0,06 бар

Для контура без возврата. 3,5 бар

ОТКЛЮЧЕНИЕ ПОДАЧИ ТОПЛИВА ПРИ СТОЛКНОВЕНИИ

Для снижение риска пожара при столкновении на автомобиль устанавливается система отключения подачи топлива. Восстановление подачи топлива после ремонта проводится механическим способом взводом инерционного выключателя (1). Выключатель установлен в цепи топливного насоса между выводом 1 реле топливного насоса и «плюсом» источника питания.

При столкновении инерционная масса выключателя (стальной шарик) из-за своего перемещения разрывает цепь питания топливного насоса. Подача питания отключается на топливном насосе и форсунках. Для восстановления цепи питания после ремонта нужно нажать на кнопку инерционного выключателя. После этого обязательно сбросьте код неисправности (прекращение питания топливного насоса) из памяти блока управления.

Видео по теме «Рено Симбол. Система питания (топливная система) двигателя (K4J, K7J)»

Фильтр топлива Рено Логан, Сандеро, Дастер
Причина почему не заводится рено Логан, Сандеро, Ларгус, Логан2 часть2
Как исключить подсос воздуха с форсунок на Renault Kangoo 1.5DCI

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector