4h4-auto.ru

4х4 Авто
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как регулировать напряжение генератора переменного тока

Как регулировать напряжение генератора переменного тока

Для нормальной работы потребителей электрической энергии необходимо, чтобы значение частоты тока и напряжения соответствовали номинальным или, точнее, не выходили за допустимые пределы. Снижение частоты тока ведет к изменению частоты вращения электродвигателей, увеличению потребления мощности, а поэтому к их перегреву. Кроме того, на многих производствах изменение частоты вращения рабочей машины может самым пагубным образом сказаться на качестве выпускаемой продукции. Частоту тока на электрических станциях автоматически поддерживают на постоянном уровне при помощи регуляторов частоты вращения первичных двигателей.

Отклонение значения напряжения от номинального также приводит к нарушению нормального режима работы приемников энергии у потребителей. Известно, что вращающий момент электродвигателя пропорционален квадрату напряжения. Чтобы двигатель при снижении напряжения продолжал нести нагрузку, должно увеличиться скольжение, то есть уменьшиться частота вращения двигателя. Но при ее падении увеличивается потребляемый электродвигателем ток, что вызывает перегрев электродвигателя. Поэтому на электрических станциях наряду с устройствами регулирования частоты тока предусматривают устройства для регулирования напряжения.

В соответствии с ГОСТом в нормальном режиме работы допускаются отклонения значений частоты тока от номинального в пределах + 0,1 Гц. Временная работа энергосистемы возможна с отклонением частоты ±0,2 Гц. Для изолированно работающих станций мощностью до 100 и до 50 кВт допустимые отклонения частоты тока составляют соответственно +3 и +5 Гц.

Отклонения напряжения на зажимах приборов рабочего освещения, установленных в производственных помещениях и общественных зданиях, где требуется значительное зрительное напряжение, а также в прожекторных установках наружного освещения допускаются в пределах от —2,5 до +5% номинального. На зажимах электродвигателей и пускозащитной аппаратуры допускается отклонение напряжения в диапазоне от —5 до +10% номинального, а на зажимах остальных приемников—на ±5% номинального

В малоответственных сельскохозяйственных установках допустимые отклонения напряжения составляют от +7,5 до —7,5%.

Все рассмотренные выше схемы генераторов предполагают ручное регулирование напряжения, которое не может обеспечить надлежащего и своевременного контроля за изменением нагрузки. Современные синхронные генераторы оборудованы автоматическими устройствами, которые не только регулируют напряжение на зажимах генераторов, но и при необходимости увеличивают возбуждение до максимального значения в момент снижения напряжения (например, при аварийных режимах). Такие устройства называютавтоматическими регуляторами возбуждения (АРВ).

На маломощных сельскохозяйственных станциях устройства АРВ облегчают запуск короткозамкнутых электродвигателей. Они способствуют более быстрому восстановлению напряжения после отключения поврежденных участков электроустановки. Благодаря этому электрические двигатели, которые в момент аварии и понижения напряжения несколько притормозились, восстанавливают номинальную частоту вращения без нарушения технологического процесса — остановки рабочей машины.

Устройства автоматического регулирования возбуждения синхронных генераторов по принципу действия могут быть подразделены на три группы: 1) автоматические регуляторы напряжения; 2) устройства быстродействующей релейной форсировки возбуждения и 3) устройства компаундирования.

Нагрузка на генератор, определяемая числом и мощностью потребителей электроэнергии, постоянно изменяется. Увеличение нагрузки на генератор вызывает уменьшение частоты вращения первичного двигателя, а следовательно, и частоты тока. Наоборот, сброс нагрузки приводит к резкому возрастанию частоты вращения первичного двигателя и, значит, к увеличению частоты тока, в сети.

Для поддержания частоты тока на заданном уровне на электрических анциях устанавливают автоматические регуляторы частоты вращения первичных двигателей. Основным элементом аких устройств служит центробежный маятник, который воспринимает изменение частоты вращения первичного двигателя и через дополнительные устройства воздействует на орган, регулирующий частоту вращения. Регуляторы частоты вращения могут быть прямогоили косвенного действия.

ris_10.9

Рисунок 10.9 иллюстрирует принцип работы регулятора прямого действия. При изменении частоты вращения (например, уменьшении) центробежный маятник М изменит свою первоначальную амплитуду (радиус) отклонения (показано

пунктиром) и через рычаг Р воздействует на задвижку 3, регулирующую поступление горючей смеси в цилиндры двигателя. Если нужно изменить нагрузку двигателя при постоянной частоте вращения, регулируют натяжение пружины П.

Регуляторы прямого действия применяют на двигателях малой мощности. Для поворота регулирующих клапанов паровых турбин или лопаток направляющего механизма гидротурбин энергии маятника недостаточно. В этом случае применяют регуляторы косвенного действия. Центробежный маятник воздействует на промежуточный механизм привода регулирующего органа первичного двигателя (серводвигатель).

Для автоматического регулирования напряжения на генераторах сельских электрических станций применяют обычно регуляторы напряжения реостатного, вибрационного и комбинированного типов. Изготавливают также электронные регуляторы.

Читайте так же:
Как регулировать клапан на дизель

Среди регуляторов напряжения угольный регулятор — один из самых простых и дешевых, однако область его применения ограничена станциями малых мощностей. Это регулятор прямого действия, так как он воздействует непосредственно на возбуждение возбудителя.

Такой регулятор (рис. 10.10, а) состоит из угольного реостата 4, полупроводникового выпрямителя 1, электромагнита 6 с рычагом 2 и пружиной 5. Угольные столбики реостата набраны из отдельных угольных шайб. Сопротивление этих столбиков зависит от степени сжатия шайб. Чем больше давление на столбики, тем меньше сопротивление реостата (и наоборот). Давление на угольные столбики создается тягой 3 и пружиной 5. Если электромагнит 6 включен, то якорь рычага 2 притягивается к сердечнику электромагнита, пружина 5 натягивается, а тяга 3, поднимаясь, уменьшает степень сжатия угольных шайб. Таким образом, и повышении напряжения в сети возрастает сила притяжения якоря, следовательно, уменьшается степень сжатия шайб в угольном реостате, возрастает его сопротивление и снижается ток в цепи возбуждения возбудителя В. Значение напряжения на зажимах генератора Г уменьшается до номинального.

ris_10.10

Если нагрузка на генератор возрастает, напряжение его несколько спадает, сила притяжения электромагнита уменьшается, пружина 5 увеличивает сжатие угольных шайб в столбиках реостата и сопротивление реостата уменьшается. Поэтому усиливается ток возбуждения возбудителя и напряжение на зажимах генератора возрастает до номинального. Угольный реостат типа РУН рассчитан на номинальные напряжения 115 и 230 В.

При параллельной работе генераторов для повышения устойчивости работы агрегатов в схеме включения угольного реостата возбуждения предусматривается специальное устройство (компенсатор реактивной мощности), предупреждающее возрастание реактивной нагрузки при изменении возбуждения. Этой цели служит трансформатор тока ТТ, включенный в фазу В. Вектор напряжения в этой фазе UB сдвинут на угол 90° по отношению к вектору напряжения UAc между фазами А и С (рис. 10.10, б). При cosφ =0, то есть если ток будет сдвинут по отношению к напряжению на 90°, во вторичной цепи трансформатора тока ТТ появится ток IB, совпадающий по направлению с напряжением UAc, питающим селеновый выпрямитель, и угольный реостат возбуждения воспримет это увеличение реактивной мощности как повышение напряжения. Реостат сработает на снижение возбуждения, а следовательно, и уменьшение реактивной мощности.

Стабилизирующий трансформатор СТ предназначен для сглаживания толчков тока и напряжения в момент регулирования напряжения. Этот трансформатор выполняет роль демпфирующего устройства в период регулирования возбуждения.

Кроме угольного реостата типа РУН, применяются реостатные регуляторы с проволочным резистором, имеющим отпайки от отдельных секций. Электромагнит регулятора в зависимости от значения напряжения на зажимах генератора вызывает замыкание или размыкание контактов, которые шунтируют отдельные секции реостата, включенного в обмотку возбуждения возбудителя. Этот реостат рассчитан на ток до 2 А и состоит из десяти секций (ступеней) сопротивлением 3 Ом каждая. Такой регулятор применим для отдельно работающих генераторов мощностью до 60 кВ•А. Использовать их при параллельной работе не рекомендуется, поскольку отсутствует устройство для выравнивания реактивных мощностей. При колебаниях нагрузки от нуля до номинальной напряжение генератора поддерживается на уровне ± 2.5%.

Вибрационные регуляторы напряжения типа АВРН предназначены для генератора мощностью До 60 кВ • А. Точность их регулирования ± 5% при изменении нагрузки от нуля до номинальной и колебаниях частоты тока в пределах ±20%. Комбинированные регуляторы напряжения сочетают в себе особенности регуляторов двух, первых типов.

Генератор и регулятор напряжения

Генератор автомобильный

Генератор преобразует механическую энергию, получаемую от двигателя автомобиля, в электрическую. Генератор питает все потребители электрического тока и заряжает аккумуляторную батарею при работающем двигателе.

На автомобилях применяются генераторы переменного тока, представляющие собой трехфазную синхронную электрическую машину с электромагнитным возбуждением. На схеме 1 показан автомобильный генератор переменного тока. Основными частями генератора являются статор 8 с неподвижной обмоткой, в которой индуктируется переменный ток, и ротор 7, создающий подвижное магнитное поле. Ротор генератора установлен в двух шариковых подшипниках 5. Он приводится во вращение через шкив 4 генератора с помощью клинового ремня от коленчатого вала двигателя. Этим ремнем также вращается шкив привода вентилятора и насоса системы охлаждения.

Схема автомобильного генератора

Схема 1 – Устройство автомобильного генератора

1, 6 – крышки; 2 – выпрямительный блок; 3 – щетки; 4 – шкив; 5 – подшипник; 7 – ротор; 8 – статор; 9 — втулка

Принцип работы

При работе генератора по обмотке возбуждения ротора проходит ток, подводимый через щетки 3 и создающий магнитное поле, которое при вращении ротора индуктирует в обмотке статора переменный ток. Переменный ток преобразуется в постоянный с помощью выпрямительного блока 2. Генератор охлаждается вентилятором шкива 4. Электрогенератор устанавливается на блоке цилиндров двигателя и крепится к литому чугунному кронштейну блока и натяжной планке. В ушках крышек 1 и 6 генератора для крепления используются резиновые буферные втулки 9, обеспечивающие упругую связь и исключающие поломку ушков.

Читайте так же:
Автоматическая синхронизация времени ubuntu

Регулятор напряжения

Назначением регулятора является поддержание постоянного напряжения тока, вырабатываемого генератором при переменной частоте вращения коленчатого вала двигателя.

Принцип работы

Регулятор напряжения (схема 2) представляет собой двухступенчатый электромагнитный регулятор вибрационного типа.

При возрастании напряжения генератора до 13…14 Вольт якорь 6 регулятора под действием магнитного поля обмотки 8 и пружины 7 начинает вибрировать, размыкая и замыкая подвижный 4 и верхний неподвижный 5 контакты. При этом в цепь обмотки возбуждения генератора то включается, то выключается из нее дополнительное сопротивление 1. Так осуществляется первая ступень регулирования напряжения генератора.

Регулятор напряжения - схема

Схема 2 – Регулятор напряжения

1 – сопротивление; 2 – дроссель; 3, 4, 5 – контакты; 6 – якорь; 7 – пружина; 8 — обмотка

При повышении напряжения генератора более 14 Вольт начинают замыкаться и размыкаться подвижный 4 и нижний неподвижный 3 контакты. При замыкании этих контактов обмотка возбуждения автомобильного генератора замыкается на «массу». Так происходит вторая ступень регулирования напряжения. В результате вырабатываемое напряжение всегда остается в заданных пределах.

Для уменьшения искрения между контактами 4 и 5 при работе регулятора служит дроссель 2. Регулятор напряжения сверху закрывается стальной крышкой с прокладкой из полиуретана и устанавливается в подкапотном пространстве отделения двигателя.

Электронные регуляторы напряжения

Постоянное напряжение тока, вырабатываемого другими генераторами, может поддерживать также малогабаритный микроэлектронный регулятор напряжения, который встроен в генераторы. Он представляет собой неразборное и нерегулируемое устройство. При возрастании напряжения генератора свыше 13,5…14,5 В электронный регулятор напряжения прерывает поступление тока в обмотку возбуждения ротора.

В результате этого напряжение генератора падает. Регулятор напряжения вновь пропускает ток в обмотку возбуждения ротора, и процесс повторяется. Таким образом, непрерывно и автоматически регулируя ток, проходящий по обмотке возбуждения автомобильного генератора, регулятор поддерживает напряжение в пределах 13,5…14,5 В независимо от тока нагрузки и частоты вращения коленчатого вала двигателя.

Устройства регулирования напряжения на ДЭС

Устройства регулирования напряжения на дизельных электростанциях. Принципиальная схема дизель-генератора АД-20М. Угольный регулятор напряжения

Одним из основных требований потребителей к качеству электроэнергии является стабильность напряжения на шинах ДЭС в условиях изменения значения и характера (cosφ) нагрузки станции. При переходе от одного режима нагрузки ДЭС к другому напряжение на шинах ДЭС будет оставаться неизменным, если ток возбуждения генератора будет изменяться в соответствии с изменением нагрузки.

Поддержание стабильного напряжения генераторов дизельной электростанции (ДЭС) осуществляется устройствами (блоками) регулирования напряжения. Автоматические регуляторы напряжения по конструкции регулирующего органа подразделяются на два типа: электромеханические и электромагнитные.

Электромеханические регуляторы состоят из подвижных частей (электромагнитов с подвижными якорями, пружин и др.) и воздействуют на ток возбуждения с помощью изменения активного сопротивления цепи обмотки возбуждения. К этому виду относятся угольные регуляторы, которые совместно с другой аппаратурой (трансформаторами, выпрямителями и другими деталями) входят в блок регулирования напряжения (БРН). На генераторах с машинным возбуждением серий ДГС и ПС-93-4 устанавливаются блоки БРН с угольными регуляторами возбуждения.

Электромагнитные регуляторы состоят из статических (неподвижных) частей (трансформаторов, магнитных усилителей, конденсаторов, реакторов и др.) и изменяют ток возбуждения генератора с помощью дополнительного тока от регулятора обмотки возбуждения. К этому виду регуляторов относятся компаундирующие устройства с электромагнитной коррекцией, с магнитными усилителями и др.

На генераторах серии ЕСС устанавливают БРН, выполненные на принципе компаундирования, а для увеличения точности регулирования используется электромагнитный корректор напряжения.

На генераторах серий ДГФ и ГСФ БРН выполнен на принципе фазового компаундирования с полупроводниковым корректором напряжения.

На генераторах серии СГД устанавливают регуляторы напряжения типа РНА-60, работающие на принципе фазового компаундирования с управлением от электромагнитного корректора напряжения.

Блок БРН с угольным регулятором имеет четыре исполнения: 412, 421, 422, 423. Устройство и принцип работы всех блоков БРН одинаков.

Читайте так же:
Порядок регулировки клапанов вольво f12

Блок БРН состоит из угольного регулятора УРН, трансформатора регулятора напряжения Тр2, стабилизующего трансформатора Тр1, селеновых выпрямителей ВС1 и ВС2, конденсаторов С1, С2 и резисторов R3, R4, R5. Все элементы БРН укреплены на каркасе и закрыты съемным кожухом.

Угольный регулятор напряжения типа УРН представляет собой прямоходовой электромеханический регулятор реостатного типа.

Угольный регулятор напряжения типа УРН-423

Рис.1. Угольный регулятор напряжения типа УРН-423.
а — общий вид; б — продольный разрез;
1 — слюдяные прокладки; 2 — фарфоровая втулка; 3,12,22,29 — винты;
4 — скоба; 5 — нажимный винт; 6 — стопорный винт;
7 — неподвижный угольный контакт; 8 — корпус регулятора;
9 — керамическая (фарфоровая) трубка; 10 — угольный столб;
11 — подвижный угольный контакт; 13 — колпак;
14 — контактная пластина; 15 — пластина для магнитопровода;
19 — стопорный винт сердечника; 20 — сердечник;
21 — основание магнитопровода; 23 — обмотка электромагнита;
24 — диамагнитная шайба; 25 — опорное коническое кольцо;
26 — пакеты пружин; 27 — якорь; 28 — пластина для крепления пружин;
30 — плунжер; 31 — амортизатор.

Регулятор типа УРН (рис.1) состоит из электромагнита с сердечником, якоря подвижной системы регулятора, над которым расположены пакеты пружин, угольных столбов, помещенных в фарфоровую трубку, расположенную на корпусе регулятора, неподвижного и подвижного угольных контактов, к которым подключены проводники.

Угольный столб 10, набранный из шероховатых отдельных шайб, включен с помощью контактов 7 и 11 в цепь обмотки возбуждения возбудителя. На угольный столб действует пружина 26, сжимающая угольные шайбы столба, и якорь 27, противодействующий сжатию пружины. Общая площадь соприкосновения угольных шайб столба, а следовательно, и его сопротивление зависят от давления, поэтому разность этих двух сил определяет сопротивление цепи обмотки возбуждения возбудителя.

При номинальном напряжении генератора подвижная система угольного регулятора находится в равновесии (усилия якоря электромагнита и пружины, сжимающей шайбы угольного столба УРН, равны). При увеличении нагрузки генератора напряжение на его выводах уменьшится, в связи с этим уменьшится ток в обмотке электромагнита УРН. Под действием пружины 26 подвижная система УРН сместится, что вызовет сжатие угольного столба и изменение (уменьшение) его сопротивления.

Уменьшение сопротивления приведет к увеличению тока в обмотках возбуждения возбудителя и генератора, напряжение на выводах генератора увеличится. При повышении напряжения генератора, вызванного сбросом нагрузки, сопротивление угольного столба Ур увеличится, а напряжение на выводах генератора уменьшится.

Принципиальная схема БРН генератора с угольным регулятором УРН

Рис.2. Принципиальная схема БРН генератора с угольным регулятором УРН.
Г — генератор; В — возбудитель;
ОВГ — обмотка возбуждения генератора;
ОВВ — обмотка возбуждения возбудителя.

Обмотка электромагнита УРН (рис.2) включена на напряжение генератора через понижающий трансформатор Тр2 и выпрямитель ВС1. Конденсаторы C1 и С2 установлены для сглаживания пульсаций выпрямленного напряжения выпрямителя ВС1.

Последовательно с первичной обмоткой Тр2 включен резистор R5, служащий для компенсации температурного изменения сопротивления обмотки Тр2.

Реостат установки РУ включен в цепь вторичной обмотки Тр2 для установки уровня автоматического peгулирования напряжения. Угольный столб УРН и резистор R3 включены последовательно в цепь обмотки возбуждения возбудителя. Резистор R3 служит для уменьшения мощности рассеивания в угольном столбе УРН. Стабилизирующий трансформатор Тр1 служит для устранения неустановившихся колебаний напряжения генератора, возникающих при работе УРН. Первичная обмотка трансформатора Тр1 включена через сопротивление R4 на напряжение якоря возбудителя, а вторичная — последовательно в цепь электромагнита УРН. Параллельно обмотке возбуждения возбудителя подключен выпрямитель ВС2 для предохранения угольного столба УРН от подгара при перенапряжениях на зажимах обмотки возбуждения возбудителя.

При уменьшении напряжения генератора напряжение на первичной и вторичной обмотках трансформатора Тр2 понизится, что вызовет уменьшение тока в цепи электромагнита УРН и сопротивления угольного столба УРН.

Использование схемы компаундирования обеспечивает точность поддержания напряжения ±5%, а применение электромагнитного корректора увеличивает точное поддержания напряжения до ±2%.

Блок регулирования напряжения с электромагнитным корректором состоит из блока компаундирования, установленного на генераторе, и блока электромагнитного корректора.

Принципиальная схема дизель-генератора АД-20М

Рис.3. Принципиальная схема дизель-генератора АД-20М

На рис.3 изображена принципиальная схема регулятора напряжения с электромагнитным корректором.

В регуляторе использован принцип фазовою компаундирования и применены три однофазных четырехобмоточных трансформатора ТТП с подмагничиванием от корректора напряжения. Одна из первичных обмоток ТТП включена последовательно с нагрузкой генератора, а другая — через линейный реактор Р параллельно нагрузке. Вторичная обмотка ТТП через выпрямитель СВ1 соединена с обмоткой возбудителя генератора.

Читайте так же:
Клапан подпитки системы отопления как регулировать

Корректор напряжения состоит из автотрансформатора АТН, магнитного усилителя МУ и измерительного органа, имеющего нелинейный реактор НР, линейный реактор ЛP и конденсатор С2.

Небольшое увеличение напряжения на выводах генератора приводит к резкому увеличению тока реактора НР, который увеличивает ток в обмотке управления МУ. Возросший выходной ток МУ проходит через выпрямитель СВ2 и подается на обмотку подмагничивания трансформатора ТТП. Увеличение тока в обмотке подмагничивания вызовет уменьшение тока во вторичной обмотке ТТП и в обмотке возбуждения генератора, что приведет к уменьшению напряжения на выводах генератора.

При уменьшении напряжения на зажимах генератора наблюдается обратная картина. На дизель-генераторах кроме напряжения часто меняется и частота, поэтому в корректоре предусмотрена частотная компенсация.

В схеме корректора частотная компенсация осуществляется реактором ЛР и конденсатором С2, которые изменяют напряжение на реакторе ИР пропорционально изменению частоты генератора и оставляют ток HP неизменным. Эта схема обеспечивает независимость тока HP от изменения частоты и позволяет при изменении частоты от 48 до 52 Гц обеспечить изменение напряжения генератора в пределах ±2%.

Блок регулирования напряжения с полупроводниковым корректором напряжения. Полупроводниковый корректор напряжения в БРН предназначен для поддержания стабильного напряжения на выводах генератора в пределах ±2%.

Принципиальная схема полупроводникового корректора напряжения

Рис.4. Принципиальная схема полупроводникового корректора напряжения

Корректор напряжения (рис.4) собран на полупроводниковых элементах и работает в импульсном режиме. Он состоит из измерительного органа и усилителя.

Измерительный орган корректора измеряет напряжение на зажимах генератора и сравнивает его с заданным. Разность между действительным и заданным напряжениями служит сигналом, который управляет полупроводниковым усилителем, соединенным с обмоткой управления трансформатора компаундирования.

Измерительный орган состоит из трансформатора ТИ, первичная обмотка которого подключена на линейное напряжение генератора через резистор R15 и регулируемый резистор РУН, выпрямителя В1, кремниевого опорного диода В2, конденсаторов С1-С2, резисторов R1, R2, R3, R5, R6, терморезисторов R7-R9, транзистора Т1.

Напряжение генератора после выпрямителя В2 и сглаживающего фильтра R8-С1 поступает на вход транзистора Т1. Входной сигнал Т1 будет тем больше, чем больше напряжение генератора превышает опорное напряжение диода В2, т.е. измерительный орган корректора преобразует превышение напряжения генератора над опорным напряжением В2 в выходной ток транзистора Т1, поступающий на вход усилителя. Если Uг

Простейший асинхронный генератор тока

Чтобы преобразовать механическую силу в электрическую энергию, используется генератор напряжения. При рассмотрении устройства важно затронуть тему принципа работы и технических характеристик. Учитываются типы установок и схема генератора.

Описание устройства

Простейший генератор тока представляет собой установку с проволочной катушкой. Ветки между собой пересекаются и во время движения электроны начинают перемещаться. Действие элементов производится относительно полюсов магнитов. Основная задача — индицирование электрического тока. Если обратиться к истории, ранее существовали такие разновидности:

  • динамо-машина Йедлика;
  • диск Фарадея;
  • динамо-машина;
  • электрические модули с вращением.

Базовый принцип работы

Для примера рекомендуется рассмотреть асинхронный генератор, который состоит из следующих элементов:

  • ротор;
  • подвижный якорь;
  • встроенный статор;
  • обмотка;
  • прочный стержень;
  • кольца;
  • корпус;
  • пластины;
  • сердечник ротора.

Принцип работы построен на преобразовании механической энергии. Уровень электрического тока зависит от скорости вращения генератора. Процесс начинается с вращения ротора. На модуль действует магнитное поле и приводится в действие пластина, а также обмотка статора. Катушка испытывает нагрузки, и в цепи появляется ток.

Катушка в цепи

Основная задача на этом этапе — повышение выходной мощности. При увеличении скорости повышается показатель магнитной индукции. Она влияет на коэффициент полезного действия устройства.

Дополнительная информация! К катушке подведены контакты статора, есть возможность подключить проводники.

Технические характеристики

Рассматривая простой генератор напряжения, нужно учитывать следующие показатели:

  • номинальная мощность;
  • частота;
  • токовая перегрузка;
  • количество полюсов.

Если рассматривать генераторы, специалисты обращают внимание на амперы. Чтобы им управлять, используются регуляторы мощности. В отечественных автомобилях показатель находится на отметке 55 ампер.

Замер напряжения

Скорость вращения генератора

Скорость вращения генератора в синхронном, асинхронном двигателе зависит от следующих факторов:

  • число полюсов;
  • частота.

Если взять модификацию на два полюса, при частоте 50 герц обеспечивает обороты 3000. Модификация на 6 полюсов при той же частоте дает обороты 1000. Устройство на 16 полюсов с частотой 50 герц обеспечивает обороты 375.

Читайте так же:
Как отрегулировать клапана на двигателе 21011

Виды и применение

Разделение устройств, происходит в зависимости от сети:

  • постоянного тока;
  • переменного тока.

Если рассматривать устройства переменного тока, они делятся на подгруппы:

  • синхронные;
  • асинхронные.

Разделение модулей в зависимости от количества фаз:

  • однофазные;
  • трехфазные.

Генераторы постоянного тока производятся с дополнительной обмоткой, предрасположены к большим нагрузкам. Они используются в металлургической промышленности. Установки функционируют по принципу электромагнитной индукции. К основным параметрам относят:

  • количество оборотов;
  • мощность;
  • индуктивность;
  • частота.

В установках используются катушки возбуждения. У них различная пропускная способность, учитывается количество контактов. Если разбирать мощные установки, у них имеется несколько колец, которые изолированы между собой. Для контроля электрического напряжения, применяется выпрямитель.

Выпрямитель в цепи

У якоря используются щётки, которые не соприкасаются между собой. При работе отслеживается уровень напряжения на контуре. В нормальном состоянии показатель имеет нулевое значение. Отдельный вопрос — выбор полярности. К второстепенным показателям приписывают синусоидальное напряжение.

  • функционирует на холостом ходу;
  • выдерживает значительную нагрузку;
  • создаёт собственное магнитное поле;
  • является компактным;
  • при вращении элемента образуется магнитное поле.

Есть установки с несколькими якорями, которые поставляются с магнитными проводами. Основной показатель демонстрирует насыщенность напряжения в цепи. Если требуется определить электродвижущую силу, берётся в расчёт количество оборотов, а также полюсов.

Важно! Дополнительно в формуле рассчитывается показатель индуктивности. Есть варианты с параллельным и последовательным соединением элементов.

Последовательное подключение

Обмотка на якоре может быть одинарной либо двойной, многое зависит от количества проводников. С целью расчета средней электродвижущей силы определяется мощность и частота. Это физическая величина, которая может быть определена лишь в квазистационарных цепях. Учитывается полезная мощность и максимальный уровень напряжения.

Виды генераторов постоянного тока:

  • параллельные;
  • последовательного возбуждения;
  • смешанный тип.

Установки с параллельным возбуждением могут называться шунтами. Они отличаются небольшой мощностью. У элементов широкая сфера применения. Модули с последовательным возбуждением могут называться сериесными и поставляются для промышленных предприятий. У них используется постоянный магнит и нет проблем с нагрузкой.

Установки способны работать на холостом ходу, есть возможность регулировать электрическую нагрузку. При рассмотрении генераторов с независимым возбуждением учитываются следующие показатели:

  • ток нагрузки;
  • холостой ход;
  • максимальная мощность;
  • частота;
  • электродвижущая сила;
  • сопротивление.

К основным преимуществам генераторов постоянного тока стоит приписать независимое возбуждение. К минусам относят зависимость от источника питания. В 2019 году установки могут применяться в сильноточных агрегатах.

Сильноточные агрегаты

Если рассматривать регулировочные характеристики генераторов, учитывается тип нагрузки и постоянство частоты. Модификации с параллельным возбуждением имеют следующие особенности:

  • не боятся коротких замыканий;
  • быстрый прогрев якоря;
  • питание установок;
  • подходят для сварочных аппаратов.

Устройства переменного тока функционируют за счет вращения ротора. Модели используются в морских судах и частично в общественном транспорте. Синхронные модификации поставляются с блоками пусковой перегрузки. Элементы встречаются в персональных компьютерах и прочей электронике.

Рассматривая асинхронный генератор, принцип работы и устройство, можно заметить, что по конструкции он являются простым. Агрегаты устанавливаются на сварочную технику. Однофазные функционируют при напряжении 220 вольт, а трехфазные поставляются с параметром 380 вольт.

Интересно! Установки востребованы на промышленных объектах, где требуются модули высокой мощности.

Схема генератора переменного тока

Схема генератора переменного тока включает следующие элементы:

  • центральный шкив;
  • вентиляторы;
  • ротор;
  • обмотка держателя;
  • контакты;
  • щеткодержатель;
  • элемент выпрямитель.

Меры безопасности

Осуществляя диагностику модуля, рекомендуется придерживаться правил:

  • не замыкать контакты;
  • не допускать попадания воды;
  • отдельно хранить аккумулятор;
  • следить за герметичностью конструкции;
  • проверять уровень напряжения.

Во время снятия генератора проверяются комплектующие. Уделяется внимание правилам эксплуатации по инструкции. Установки функционируют в определенных режимах, оцениваются основные характеристики. Модули боятся соли и жидкостей. Установка генератора должна производиться специалистом.

Если подключать генератор к автомобилю, нужно проверить силовой выпрямитель. Необходимо вывести обмотки возбудителя, а также фазу. Отдельно проверяется регулятор напряжения. При установке запрещается производить проверку до момента полного подключения.

Выше подробно описано понятие генератора напряжения. Расписан базовый принцип работы и характеристики. Учитывается ампераж, скорость вращения и схема подключения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector