4h4-auto.ru

4х4 Авто
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Цифровой ШИМ регулятор оборотов коллекторного двигателя

Цифровой ШИМ регулятор оборотов коллекторного двигателя.

Имея в хозяйстве некоторые низковольтные устройства типа небольшой шлифовальной машинки и т.п. я захотел немного увеличить их функциональный и эстетический вид. Правда это не получилось, хотя я надеюсь все таки добиться своего, возможно в другой раз, на за саму вещицу расскажу сегодня.
Производитель данного регулятора фирма Maitech, вернее именно это название часто встречается на всяких платках и блочках для самоделок, хотя сайт этой фирмы почему то мне не попался.

Из-за того, что я не сделал в итоге то, что хотел, обзор будет короче обычного, но начну как всегда с того, как это продается и присылается.
В конверте лежал обычный пакетик с защелкой.

В комплекте только регулятор с переменным резистором и кнопкой, жесткой упаковки и инструкции нет, но доехало все целым и без повреждений.

Сзади присутствует наклейка, заменяющая инструкцию. В принципе большего для такого устройства и не требуется.
Указан рабочий диапазон напряжения 6-30 Вольт и максимальный ток в 8 Ампер.

Внешний вид весьма неплох, темное «стекло», темно-серый пластик корпуса, в выключенном состоянии кажется вообще черным. По внешнему виду зачет, придраться не к чему. Спереди была приклеена транспортировочная пленка.
Установочные размеры устройства:
Длина 72мм ( минимальное отверстие в корпусе 75мм), ширина 40мм, глубина без учета передней панели 23мм (с передней панелью 24мм).
Размеры передней панели:
Длина 42.5, мм ширина 80мм

Переменный резистор идет в комплекте с ручкой, ручка конечно грубовата, но для применения вполне сойдет.
Сопротивление резистора 100КОм, зависимость регулировки — линейная.
Как потом выяснилось, 100КОм сопротивление дает глюк. При питании от импульсного БП невозможно выставить стабильные показания, сказывается наводка на провода к переменному резистору, из-за чего показания скачут +- 2 знака, но ладно бы скакали, вместе с этим скачут обороты двигателя.
Сопротивление резистора высокое, ток маленький и провода собирают все помехи вокруг.
При питании от линейного БП такая проблема отсутствует полностью.
Длина проводов к резистору и кнопке около 180мм.

Кнопка, ну тут ничего особенного. Контакты нормально открытые, установочный диаметр 16мм, длина 24мм, подсветки нет.
Кнопка выключает двигатель.
Т.е. при подаче питания индикатор включается, двигатель запускается, нажатие на кнопку его выключает, второе нажатие включает опять.
Когда двигатель выключен то индикатор так же не светится.

Под крышкой находится плата устройства.
На клеммы выведены контакты питания и подключения двигателя.
Плюсовые контакты разъема соединены вместе, силовой ключ коммутирует минусовой провод двигателя.
Подключение переменного резистора и кнопки разъемное.
На вид все аккуратно. Выводы конденсатора немного кривоваты, но я думаю что это можно простить 🙂

Дальнейшую разборку я спрячу под спойлер.

Индикатор довольно большой, высота цифры 14мм.
Размеры платы 69х37мм.

Плата собрана аккуратно, около контактов индикатора присутствуют следы флюса, но в целом плата чистая.
На плате присутствуют: диод для защиты от переполюсовки, стабилизатор 5 Вольт, микроконтроллер, конденсатор 470мкФ 35 Вольт, силовые элементы под небольшим радиатором.
Так же видны места под установку дополнительных разъемов, назначение их непонятно.

Набросал небольшую блок-схему, просто для примерного понимания что и как коммутируется и как подключается. Переменный резистор так и включен одной ногой к 5 Вольт, второй на землю. потому его можно спокойно заменить на более низкий номинал. На схеме нет подключений к нераспаянному разъему.

Читайте так же:
Датчик регулировки давления топлива дизель

В устройстве использован микроконтроллер 8s003f3p6 производства STMicroelectronics.
Насколько мне известно, этот микроконтроллер используется в довольно большом количестве разных устройств, например ампервольтметрах.

Стабилизатор питания 78M05, при работе на максимальном входном напряжении нагревается, но не очень сильно.

Часть тепла от силовых элементов отводится на медные полигоны платы, слева видно большое количество переходов с одной стороны платы на другую, что помогает отводить тепло.
Так же тепло отводится при помощи небольшого радиатора, который прижат к силовым элементам сверху. Такое размещение радиатора кажется мне несколько сомнительным, так как тепло отводится через пластмассу корпуса и такой радиатор помогает несильно.
Паста между силовыми элементами и радиатором отсутствует, рекомендую снять радиатор и промазать пастой, хоть немного но станет лучше.

В силовой части применен транзистор IRLR7843, сопротивление канала 3.3мОм, максимальный ток 161 Ампер, но максимальное напряжение всего 30 Вольт, потому я бы рекомендовал ограничивать входное на уровне 25-27 Вольт. При работе на околомаксимальных токах присутствует небольшой нагрев.
Так же рядом расположен диод, который гасит выбросы тока от самоиндукции двигателя.
Здесь применен STPS1045 10 Ампер, 45 Вольт. К диоду вопросов нет.

Первое включение. Так получилось, что испытания я проводил еще до снятия защитной пленки, потому на этих фото она еще есть.
Индикатор контрастный, в меру яркий, читается отлично.

Сначала я решил попробовать на мелких нагрузках и получил первое разочарование.
Нет, претензий к производителю и магазину у меня нет, просто я надеялся, что в таком относительно недешевом устройстве будет присутствовать стабилизация оборотов двигателя.
Увы, это просто регулируемый ШИМ, на индикаторе отображается % заполнения от 0 до 100%.
Мелкого двигателя регулятор даже не заметил, дня него это совсем смешной ток нагрузки 🙂

Внимательные читатели наверняка обратили внимание на сечение проводов, которыми я подключил питание к регулятору.
Да, дальше я решил подойти к вопросу более глобально и подключил более мощный двигатель.
Он конечно заметно мощнее регулятора, но на холостом ходу его ток около 5 Ампер, что позволило проверить регулятор на режимах более приближенных к максимальным.
Регулятор вел себя отлично, кстати я забыл указать что при включении регулятор плавно увеличивает заполнение ШИМ от нуля до установленного значения обеспечивая плавный разгон, на индикаторе при этом сразу показывается установленное значение, а не как на частотных приводах, где отображается реальное текущее.
Регулятор не вышел из строя, немного нагрелся, но не критично.

Так как регулятор импульсный, то я решил просто ради интереса потыкаться осциллографом и посмотреть что происходит на затворе силового транзистора в разных режимах.
Частота работы ШИМа около 15 КГц и не меняется в процессе работы. Двигатель заводится примерно при 10% заполнения.

Изначально я планировал поставить регулятор в свой старый (скорее уже древний) блок питания для мелкого электроинструмента (о нем как нибудь в другой раз). по идее он должен был стать вместо передней панели, а на задней должен был расположиться регулятор оборотов, кнопку ставить не планировал (благо при включении устройство сразу переходит в режим — включено).
Должно было получиться красиво и аккуратно.

Читайте так же:
Как синхронизировать время компьютера с временем на сайте

Но дальше меня ждало некоторое разочарование.
1. Индикатор хоть и был немного меньше по габаритам чем вставка передней панели, но хуже было то, что он не влазил по глубине упираясь в стойки для соединения половинок корпуса.
и если пластмассу корпуса индикатора можно было срезать, то не стал бы все равно, так как дальше мешала плата регулятора.
2. Но даже если бы первый вопрос я бы решил, то была вторая проблема, я совсем забыл как у меня сделан блок питания. Дело в том, что регулятор рвет минус питания, а у меня дальше по схеме стоит реле реверса, включения и принудительной остановки двигателя, схема управления всем этим. И с их переделкой оказалось все куда сложнее 🙁

Если бы регулятор был со стабилизацией оборотов, то я бы все таки заморочился и переделал схему управления и реверса, либо переделал регулятор под коммутацию + питания. А так можно и переделаю, но уже без энтузиазма и теперь не знаю когда.
Может кому интересно, фото внутренностей моего БП, собирался он лет так около 13-15 назад, почти все время работал без проблем, один раз пришлось заменить реле.

Резюме.
Плюсы
Устройство полностью работоспособно.
Аккуратный внешний вид.
Качественная сборка
В комплект входит все необходимое.

Минусы.
Некорректная работа от импульсных блоков питания.
Силовой транзистор без запаса по напряжению
При таком скромном функционале завышена цена (но здесь все относительно).

Мое мнение. Если закрыть глаза на цену устройства, то само по себе оно вполне неплохое, и выглядит аккуратно и работает нормально. Да, присутствует проблема не очень хорошей помехозащищенности, думаю что решить ее несложно, но немного расстраивает. Кроме того рекомендую не превышать входное напряжение выше 25-27 Вольт.
Больше расстраивает то, что я довольно много смотрел варианты всяких готовых регуляторов, но нигде не предлагают решение со стабилизацией оборотов. Возможно кто то спросит, зачем мне это. Объясню, как то попала в руки шлифовальная машинка со стабилизацией, работать гораздо приятнее чем обычной.

На этом все, надеюсь что было интересно 🙂

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Простая схема управления двигателем постоянного тока

Простейшая схема управления двигателем постоянного тока состоит из полевого транзистора, на затвор которого подается ШИМ сигнал. Транзистор в данной схеме выполняет роль электронного ключа, коммутирующего один из выводов двигателя на землю. Транзистор открывается на момент длительности импульса.

Как будет вести себя двигатель в таком включении? Если частота ШИМ сигнала будет низкой (единицы Гц), то двигатель будет поворачиваться рывками. Это будет особенно заметно при маленьком коэффициенте заполнения ШИМ сигнала.
При частоте в сотни Гц мотор будет вращаться непрерывно и его скорость вращения будет изменяться пропорционально коэффициенту заполнения. Грубо говоря, двигатель будет «воспринимать» среднее значение подводимой к нему энергии.

Схема для генерации ШИМ сигнала

Существует много схем для генерации ШИМ сигнала. Одна из самых простых — это схема на основе 555-го таймера. Она требует минимум компонентов, не нуждается в настройке и собирается за один час.

Читайте так же:
Порядок регулировки клапан 402

генератор шим сигнала

Напряжение питания схемы VCC может быть в диапазоне 5 — 16 Вольт. В качестве диодов VD1 — VD3 можно взять практически любые диоды.

Если интересно разобраться, как работает эта схема, нужно обратиться к блок схеме 555-го таймера. Таймер состоит из делителя напряжения, двух компараторов, триггера, ключа с открытым коллектором и выходного буфера.

блок схема 555 таймера

Вывод питания (VCC) и сброса (Reset) у нас заведены на плюс питания, допустим, +5 В, а земляной (GND) на минус. Открытый коллектор транзистора (вывод DISCH) подтянут к плюсу питания через резистор и с него снимается ШИМ сигнал. Вывод CONT не используется, к нему подключен конденсатор. Выводы компараторов THRES и TRIG объединены и подключены к RC цепочке, состоящей из переменного резистора, двух диодов и конденсатора. Средний вывод переменного резистора подключен к выводу OUT. Крайние выводы резистора подключены через диоды к конденсатору, который вторым выводом подключен к земле. Благодаря такому включению диодов, конденсатор заряжается через одну часть переменного резистора, а разряжается через другую.

В момент включения питания на выводе OUT низкий логический уровень, тогда на выводах THRES и TRIG, благодаря диоду VD2, тоже будет низкий уровень. Верхний компаратор переключит выход в ноль, а нижний в единицу. На выходе триггера установится нулевой уровень (потому что у него инвертор на выходе), транзисторный ключ закроется, а на выводе OUT установиться высокий уровень (потому что у него на инвертор на входе). Далее конденсатор С3 начнет заряжаться через диод VD1. Когда она зарядится до определенного уровня, нижний компаратор переключится в ноль, а затем верхний компаратор переключит выход в единицу. На выходе триггера установится единичный уровень, транзисторный ключ откроется, а на выводе OUT установится низкий уровень. Конденсатор C3 начнет разряжаться через диод VD2, до тех пор, пока полностью не разрядится и компараторы не переключат триггер в другое состояние. Далее цикл будет повторяться.

Приблизительную частоту ШИМ сигнала, формируемого этой схемой, можно рассчитать по следующей формуле:

где R1 в омах, C1 в фарадах.

При номиналах указанных на схеме выше, частота ШИМ сигнала будет равна:

F = 1.44/(50000*0.0000001) = 288 Гц.

ШИМ регулятор оборотов двигателя постоянного тока

Объединим две представленные выше схемы, и мы получим простую схему регулятора оборотов двигателя постоянного тока, которую можно применить для управления оборотами двигателя игрушки, робота, микродрели и т.д.

регулятор оборотов двигателя

VT1 — полевой транзистор n-типа, способный выдерживать максимальный ток двигателя при заданном напряжении и нагрузке на валу. VCC1 от 5 до 16 В, VCC2 больше или равно VCC1.

Вместо полевого транзистора можно использовать биполярный n-p-n транзистор, транзистор дарлингтона, оптореле соответствующей мощности.

Управление скоростью вращения двигателя постоянного тока с помощью Arduino

Двигатель постоянного тока – это наиболее часто используемый тип двигателя в робототехнике и электронных устройствах. Для управления скоростью вращения такого двигателя можно использовать различные методы, но в этом проекте мы будем использовать для этой цели широтно-импульсную модуляцию (ШИМ). Управлять скоростью вращения двигателя постоянного тока мы будем с помощью потенциометра, поворачивая его ручку.

Управление скоростью вращения двигателя постоянного тока с помощью Arduino: внешний вид

Общий принцип использования ШИМ

Управляя скоростью модуляции ШИМ (Pulse Width Modulation, PWM) можно регулировать, к примеру, силу свечения светодиода – данный принцип пояснен на следующем рисунке. Аналогичный механизм используется и для управления скоростью вращения двигателя.

Читайте так же:
Прибор для регулировки света фар как пользоваться

Если на представленном рисунке выключатель будет замкнут на протяжении некоторого времени, то на протяжении этого же времени лампочка будет гореть. Если переключатель будет замкнут в течение 8ms и будет разомкнут 2ms в течение интервала 10ms, тогда лампочка будет гореть только в течение интервала 8ms. В рассмотренном примере можно сказать, что среднее выходное напряжение (на лампочке) будет составлять 80% от напряжения батареи.

В другом случае выключатель замыкается на 5ms и размыкается на эти же самые 5ms в течение интервала 10ms, таким образом среднее напряжение на лампочке будет составлять 50% от напряжения батареи. Принято говорить, что если напряжение батареи 5В и цикл занятости составляет 50%, то среднее напряжение на оконечном устройстве (лампочке) будет составлять 2.5В.

В третьем рассмотренном на рисунке случае цикл занятости составляет 20% и поэтому среднее напряжение на оконечном устройстве (лампочке) будет составлять 20% от напряжения батареи.

Применяя все сказанное к рассматриваемому нами примеру управления скоростью вращения двигателем можно сказать, что чем больше будет коэффициент заполнения ШИМ (отношение длительности ON состояния к периоду), тем выше будет скорость вращения двигателя.

Необходимые компоненты

  1. Плата Arduino UNO (купить на AliExpress).
  2. Двигатель постоянного тока.
  3. Транзистор 2N2222 (купить на AliExpress).
  4. Потенциометр 100 кОм (купить на AliExpress).
  5. Конденсатор 0.1 нФ (купить на AliExpress).
  6. Макетная плата.
  7. Соединительные провода.

Схема устройства

Представлена на следующем рисунке.

Схема управления скоростью вращения двигателя постоянного тока с помощью ArduinoОбъяснение работы программы

Полный текст программы приведен в конце статьи, в этом разделе объяснено назначение ключевых элементов кода.

В ниже представленных строчках кода мы инициализируем переменные c1 и c2 и назначаем аналоговый контакт A0 выходу потенциометра, а 12-й контакт будем использовать для ШИМ.

Как регулировать обороты двигателя с переменным током

механики подтвердили что да можно в 2 раза увеличить без проблем.
Да?

Двигатель 3000 на 100 Гц будет около 6000 об/мин. Болгарка столько крутит. Подшипники сколько проживут? А редуктор (не напрямую ведь двигатель подключен)?

Возникла необходимость увеличить производительность (скорость) конвейера, механики подтвердили что да можно в 2 раза увеличить без проблем.

Я думаю механики имели ввиду, что можно без проблем увеличить скорость именно конвейера, а не электродвигателя (во всяком случае за ЭД у нас отвечают электрики, а вот за конвейер уже механики). Конвейер то может быть и можно, а вот по двигателю читайте выше.

Мужики огромное спасибою В принципе понятно. Двигатель 3000 об/мин.
http://s5.postimage.org/u5o64e8kz/20150117_131531.jpg (http://postimage.org/image/u5o64e8kz/)
Механики естественно касательно конвейера дали добро на разгон только мехчасть. Крутануть конечно же попробуем. Всеравно редуктор спалим скорей всего, потому что редуктор червячный и сильно сомневаюсь что очень выдюжит повышенные обороты. Ну то не моя забота, просто главный механик решил выпендрится перед руководством, а потом всё началось, начали нас напрягать. Что либо объяснять бесполезно.

Еще такой вопрос.
Привезли машину Б/У, ну там куча всяких проблем, в том числе и по мехчасти.
В общем нужно запускать двигатель в режиме тяжелого пуска. Ток при запуске прыгает до 90А.
Двигатель 3кВт. После разгона двигатель выходит на свой режим и нормально крутится.
Поставили задачу переделать всю автоматику и если с контроллерами и прочьими заумностями проблем нет то с мотором есть.
На двигатель нацепили ПЧВ103-4К0-В. Привод не может раскрутить двигатель в режиме плавного разгона выдает ошибку "превышен предельный крутящий момент" код ошибки 12. Скорость пока не пробовали регулировать.
Как решить проблему?

Читайте так же:
Входит ли регулировка фар на то

Что либо объяснять бесполезно.

— а вот интересно . на Чернобыльской АЭС такая же ситуация была? :rolleyes:
Подумай, прежде чем руки запускать в оборудование, дружище, кому будешь объяснять — начальнику или прокурору? — Помощников намотать срок найдёшь легко — помощников смотать . вряд ли.

Крутите на любую частоту и не бойтесь за электричество, все — ОК! Ограничение существует в механической области — это подшипники. До 3000 об/мин нормально работают любые, при 5000 — 6000 оборотах обычные уже конкретно греются и могут клинить, поэтому замена на быстроходные, либо кратковременные выходы на данные скорости. Скорости 3000 — 4000 подсаживают ресурс в длительной переспективе. Да, и осторожнее с торможением — делать плавнее, ставить резисторы..

При тяжелых пусках — делайте разгон более плавным, смотрите (увеличивайте) настройку ограничения по току и по моменту (это разные параметры!) кроме того есть настройка допустимого времени перегрузки до срабатывания защиты. Обязательно точно указывайте параметры двигателя в настройках ПЧ и проводите автонастойку ПЧ на двигатель. Ни двигатель, ни ПЧ не выйдут из строя, возможна лишь тепловая интегральная перегрузка за счет плохого охлаждения и частых старт-стопов.

Векторные режимы — наше все! единственная причина не использовать вектор — это несколько двигателей включенных параллельно на один ПЧ. Есть правда еще одна — это когда производитель ПЧ сильно лукавит указывая наличие "векторного" режима для своих поделок, и называя "векторным" например, подъем момента в низких частотах.

Скорость регулировать нужно.
В том и проблема.
ПЧ — 4кВт двигатель — 3кВт.
С пускателей принципе двигатель запускается в допустимом режиме 7-8 Inom, на автоматическом выключателе стоит отсечка 10-12Inom, на нормальные обороты выходит за максимум 5-6 секунд. Запускается не часто.
Я в инструкции не нашел как регурилировать ток перегруза и время перегруза и ток отсечки.
Правильно ли я понимаю что скорость вращения ротора двигателя можно контролировать только энкодером. У нас есть привода которые могут контролировать скорость вращения ротора без энкодера, наверное не достаточно точно, но могут.

1. Для работы в "тяжелых" условиях ПЧ должен быть "больше" двигателя на следующий типоразмер(по мощности) , т.е для двигателя 3квт при тяжелых условиях надо брать ПЧ на 7.5 кВт. При этом надо настроить параметры двигателя правильно иначе ПЧ может движок "подпалить" , т.к настройки по умолчанию на макс.мощность.
2. Векторный режим для конвейера не нужен.
3. 100гц — крутится без нагрузки мотор будет , но. будет слышно , что ему не очень хорошо при этом . Занимался подобными экспериментами , уже при 80гц на реальной установке начинаются "проскальзывания" и "вибрация" железа электродвигателя . Поэтому 100гц — это так движок в холостую покрутить , посмотреть и. отказаться от этой затеи .

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector