4h4-auto.ru

4х4 Авто
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Плавная регулировка тока стабилизации

PicHobby.lg.ua

В статье расскажу, как сделать простой стабилизатор тока для светодиодов на полевом транзисторе.

Описание задумки.

Задолго до разработки фонарика на ATtiny13 мне уже доводилось работать со сверх-яркими светодиодами. И что могу сказать. Редкий радиолюбитель жаждет чтобы светодиоды перегорали, как можно чаще! :). Особенно мощные и дорогие. Вот и мне этого не хотелось и решил взяться за разработку стабилизатора тока.

Немного теории.

Мне часто задают один и тот же вопрос, мол почему именно стабилизатор тока лучше для светодиодов, а не стабилизатор напряжения. Ответ простой, но он многим не нравиться. Постараюсь пояснить на вольт-амперной характеристики(ВАХ) SMD светодиода типоразмера 3528, рисунок 1.

Вольт-амперная характеристика(ВАХ) SMD светодиода типоразмера 3528

Рисунок 1 – Вольт-амперная характеристика(ВАХ) SMD светодиода типоразмера 3528 при 25⁰С.

Ось У – ток через светодиод.

Ось Х – падение напряжения на светодиоде.

Теперь внимание! Заявленный производителем ток для данного светодиода равен 20мА. Смотрим на рисунок и видим, что ток 20 мА приблизительно соответствует напряжению на светодиоде 3,4В. Если поднять напряжение на светодиоде до 3,5В, а это всего лишь на 0,1В больше чем его типовое напряжение, то ток увеличиться до 50мА, а это в 2,5 раза больше чем его заявленный ток. Если всё перевести в процентное соотношение, то получиться что ток возрастает в 2,5 раза, при увеличении напряжения всего лишь на 3%(округлил). Вот почему стабилизатор напряжения должен быть практически идеальным!

Теперь рассмотрим стабилизатор тока. Если стабилизировать ток 20мА, то увеличение тока на 3% даст результат – 20,6мА. Согласитесь, что это совсем другой результат и он куда лучше предыдущего!

Иногда мне пытаются доказать, что последовательное соединение светодиодов + стабилизатор напряжения лучше, чем параллельное + стабилизатор тока. Это, конечно, тема для отдельной статьи, но хочу тут немного пояснить, что параллельное соединение однозначно выигрывает.

Для примера возьмём пять светодиодов 20мА, 3,4В и соединим их последовательно и параллельно. При последовательном соединении если один светодиод перегорает и остаётся замкнутым, а такое бывает и часто, напряжение 17В(3,4В*5шт) делится между оставшимися четырьмя светодиодами в равных пропорциях (предположим что так). Получается, что падение напряжение на каждом светодиоде будет — 4,25В (17В/4шт). Ток при этом возрастает до неимоверных значений, а это приводит к последовательному перегоранию оставшихся светодиодов или части из них.

При параллельном соединении и стабилизации тока в 100мА(20мА*5шт) перегорание светодиода приведёт к увеличению тока на оставшихся всего на 5мА(20мА/4шт). Или по-другому: 100мА/4шт = 25мА – ток на каждом светодиоде. Разница очевидна! В этой статье не буду больше приводить плюсы и минусы каждого из решений, статья совсем о другом. Надеюсь пример был понятным. Мой личный выбор всегда на стороне параллельного соединения светодиодов и стабилизатора тока для них. Если и ваш тоже, то читайте дальше, как сделать несложный стабилизатор тока для светодиодов.

О схеме.

Принципиальная схема стабилизатора тока на полевом транзисторе показана на рисунке 2.

Стабилизатор тока на полевом транзисторе схема

Резистор R1 нужен для того чтобы транзистор VT2 открывался. Стабилитрон VD1 защищает затвор от перенапряжения, для транзистора P0903BDG максимальное напряжение затвор-сток – 20В. Если у вас другой транзистор, то информацию на него смотрите в даташите. Параметр этот называется Gate-Source Voltage. Если напряжение питание значительно меньше максимального напряжения затвор-сток, то можно вообще стабилитрон не ставить. Резисторы R2-R6 выполняют роль шунта. На схему добавил их побольше чтобы можно было удобно подобрать нужный номинал.

Схема работает следующим образом. В начальный момент времени транзистор VT2 открыт, ток протекает через светодиоды и шунт из резисторов R2-R6, транзистор VT1 закрыт. При протекании тока через шунт на нём падает определённое напряжение и если оно равняется напряжению открытия транзистора VT1, то он открывается и «садит» затвор транзистора VT2 на минус питания, транзистор VT2 закрывается и ток через светодиоды и шунт начинает снижаться. При снижении тока через светодиоды будет снижаться падение напряжение и на шунте, как только напряжение станет меньше чем нужно для открытия транзистора VT1, он закроется и «освободит» затвор транзистора VT2. Транзистор VT2 снова откроется и ток устремиться к светодиодам и шунту. Дальше все повторяется по кругу.

Настройка.

Настройка схемы заключается в определении необходимого тока для светодиодов и подбору номиналов резисторов шунта. Приблизительно считаю, что падение напряжение на шунте должно быть около 0,5В. Этого напряжения достаточно для открытия транзистора VT1. Хотя по даташиту напряжение база-эмиттер для транзистора BC846 – 0,66В, для отечественных – 0,7В.

Читайте так же:
Регулировка рулевой рейки mitsubishi pajero

В качестве примера рассчитаю для вас номиналы резисторов шунта на ток 170мА.

Сопротивление шунта(Ом) = падение напряжение на шунте(В) / ток через шунт (А), получается: Сопротивление шунта = 0,5В / 0,17А = 2,94 Ом. Полученный результат округляю до 3 Ом. Из стандартного ряда можно взять два резистора номиналом 1 Ом и 2 Ом и впаять их на плату, как R2, R3. Резисторы R4-R6 при этом исключаются из схемы.

Дальше нужно проверить какой ток стабилизирует стабилизатор. Для проверки потребуется амперметр или миллиамперметр. Прибор нужно подключить в разрыв любого из проводов питания, подать питающее напряжение, оно, кстати, должно быть больше чем типовое питание светодиодов. Лучше использовать источник питания с возможностью регулировки выходного напряжения. Подключаем, регулируем, смотрим.

В определённый момент времени ток через стабилизатор перестанет меняться – это и будет током стабилизации. Дальнейшее увеличение напряжения ничего не изменит, разве что добавит разогрев транзистора VT2. Нужно понимать, что всё избыточное напряжение будет выделяться на транзисторе VT2 в качестве тепла. Если ток стабилизации получился таким какой нужен значит подбор шунта закончен, если же ток отличается от нужного значения в большую сторону – увеличиваем сопротивление шунта, в меньшую – уменьшаем.

О печатной плате.

Печатную плату разрабатывал под SMD компоненты в программе P-CAD 2006. Размеры платы – 37×18мм, рисунок 3. Вы можете разработать свою печатную плату и прислать мне файл для размещения на сайте.

Печатная плата стабилизатора тока на полевом транзисторе

О деталях.

Перечень деталей, необходимых для сборки стабилизатора тока, свёл в таблицу 1.

Какие бывают типы стабилизаторов напряжения?

На производстве и в быту широко применяется электрическая энергия. Переменным током питают системы освещение, приводы механизмов электрических приборов, его подают на сетевой разъем электронных устройств. Сбытовые организации не всегда обеспечивают надлежащее качество электрических сетей, что проявляется, в частности, в колебаниях сетевого напряжения. Это неприятное явление характерно для:

  • дачных поселков и небольших населенных пунктов;
  • сетей автономных электростанций, не входящих в единую энергосистему.

Колебания отрицательно влияют на качество функционирования техники, снижают ее надежность. Застраховать себя от этого явления можно применением стабилизатора, который включают между сетью и нагрузкой, рисунок 1.

Схема включения стабилизатора

Рисунок 1. Схема включения стабилизатора

Типы стабилизаторов напряжения по принципу работы

Стабилизацию можно выполняться различными способами. Принципы стабилизации, использованные разработчиком, определяют типы стабилизаторов напряжения.

Релейные

Релейные стабилизаторы, часто называемые ступенчатыми, представляют собой силовой трансформатор с несколькими выходами вторичной обмотки, один из которых принимается за общий. Датчик отслеживает состояние сети, при выходе за пределы разрешенных допусков осуществляет автоматическую регулировку выходного напряжения с помощью переключения реле. При срабатывании отдельных силовых реле происходит переключение обмоток с подключением нагрузки на тот вывод, напряжение на котором минимально отличается от заданного.

Конструктивная простота релейных стабилизаторов, неплохая точность регулирования, невысокая стоимость, высокая надежность обеспечивают им высокую популярность.

Недостатки:

  • ступенчатый характер регулирования;
  • заметные искажения формы синусоиды тока нагрузки при высоком входном напряжении из-за магнитного насыщения сердечника;
  • относительно слабая нагрузочная способность рабочих контактов реле;
  • высокий уровень акустического шума.

Электромеханические (сервоприводные)

Электромеханические или сервоприводные стабилизаторы устраняют один из основных недостатков стабилизаторов с механическими реле: обеспечение только ступенчатой регулировки выходного напряжения. Принцип их действия основан на изменении коэффициента трансформации. Оно реализовано с помощью щетки, соединенной с электродом выходных клемм. Щетку перемещает по вторичной обмотке тороидального трансформатора вспомогательный электродвигатель, рисунок 2.

Конструктивные особенности сервоприводного регулятора

Рисунок 2. Конструктивные особенности сервоприводного регулятора

Для электромеханических стабилизаторов характерны большой диапазон регулировки, небольшие габариты, малая стоимость.

Основные недостатки: низкое быстродействие, хорошо слышимый ночью шум работающего электродвигателя.

Инверторные (бесступенчатые, бестрансформаторные, IGBT, ШИМ)

Инверторные стабилизаторы реализуют двухступенчатую схему получения выходного напряжения. Сначала переменный входной ток преобразуют в постоянный, а затем из него вновь генерируют переменное напряжение. Автоматическое регулирование происходит на этапе формирования постоянного тока, здесь же реализованы функции ступени стабилизации.

Существует несколько вариантов каскадного преобразования, каждому из которых соответствует подкласс инверторных стабилизаторов. Наибольшее распространение получили ШИМ-устройства и стабилизаторы на IGBT-транзисторах.

Сильные стороны этого оборудования:

  • высокая скорость реакции на изменения входного напряжения, точность регулировки выходного;
  • хорошие массогабаритные характеристики (отсутствует силовой трансформатор);
  • простотой получения КПД выше 50 %;
  • возможность плавной регулировки выходного напряжения в сочетании с широкими пределами изменения выходного электрического тока, а также работы на холостом ходе;
  • эффективное подавление скачков напряжения и импульсных помех.
Читайте так же:
Регулировка клапанов ирбис ttr 250

При применении надлежащей элементной базы инверторная техника нормально функционирует при отрицательных температурах.

Главный недостаток: плохая перегрузочная способность, в т.ч. кратковременная (не более 25 – 50% на протяжении 1 – 2 с). Последнее заставляет тщательно контролировать выходную мощность устройства при работе на реактивную нагрузку (электродвигатели различного назначения, вентиляторы и т.д.). Кроме того, следует принимать во внимание сложность электрической схемы, что увеличивает риски отказа, и высокую стоимость из-за необходимости применения силовой полупроводниковой элементной базы.

Феррорезонансные

Феррорезонансный стабилизатор — это устройство трансформаторного типа. Его характерная особенность — применение обмоток трансформатора, одетых на магнитопроводы разного поперечного сечения. Параллельно вторичной обмотке L2 подключен дополнительный конденсатор С, рисунок 3. Его емкость подобрана так, чтобы за счет резонанса обеспечивать постоянное насыщение магнитопровода вторичной обмотки. Отсюда большие изменения входного напряжения не приводят к колебаниям выходного.

Схема феррорезонансного стабилизатора

Рисунок 3. Схема феррорезонансного стабилизатора

Стабилизатор имеет высокую скорость отработки скачков, обладает повышенной надежностью за счет отсутствия схем переключения, обеспечивает неплохую точность стабилизации.

Отсутствие механически подвижных компонентов позволяет эксплуатировать феррорезонансные стабилизаторы при небольших отрицательных температурах.

Главные недостатки:

  • меньший коэффициент мощности;
  • значительные нелинейные искажения выходного тока, которые могут привести к нарушениям функционирования ряда бытовых приборов, например, к искажениям изображения цветного телевизора и некачественному стиранию старых записей магнитофоном;
  • нестабильность функционирования при вариациях частоты входного напряжения более чем на 0,5 Гц от номинального значения, что нередко встречается при питании населенного пункта от автономной электростанции.

Электронные (симисторные, тиристорные)

Так называемые электронные стабилизаторы структурно повторяют устройства на электромагнитных реле, но для ступенчатых переключений обмоток авторансформатора использованы полупроводниковые изделия. Возможно несколько разновидностей таких электронных схем, каждая из которых осуществляет автоматическое переключение коэффициента трансформации. Серийно выпускаются стабилизаторы, в которых функции ключевых элементов ступенчатого регулирования возложены на симисторы и тиристоры.

Тиристор — это полупроводниковая структура с тремя p-n-переходами, в которой выполнена глубокая положительная обратная связь. Ее наличие обеспечивает высокую скорость переключения при работе в ключевой режиме. Симистор образован двумя тиристорами с объединенными управляющими электродами, включенными встречно-параллельно, рисунок 4. За счет возможности пропускания тока этим компонентом в двух направлениях симисторные стабилизаторы демонстрируют повышенный КПД. Это выгодно отличает их от тиристорных стабилизаторов.

Принципиальная схема простейшего варианта симисторного регулятора

Рис. 4. Принципиальная схема простейшего варианта симисторного регулятора

Общие преимущества:

  • повышенный коэффициент стабилизации;
  • прекрасное подавление перепадов напряжения, импульсных помех;
  • хорошие массогабаритные параметры;
  • высокая надежность при реализации на качественной элементной базе.

Кроме того, по быстродействию электронные стабилизаторы заметно превосходят свои релейные электромеханические аналоги, т.е. хорошо отрабатывают скачки напряжения.

Недостатки:

  • плохо адаптированы для работы с реактивной нагрузкой;
  • высокая стоимость;
  • сложность выполнения ремонта.

Виды стабилизаторов напряжения по классу напряжения

Промышленность выпускает широкую гамму стабилизаторов.

По диапазону выходных напряжений электронное оборудование для однофазных сетей рассчитано на 220 – 240 В (популярна также промежуточная градация 230 В), доступны феррорезонансные стабилизаторы на 110 – 120 В.

Бытовое оборудование для трехфазных электросетей обеспечивает выходное напряжение 380 – 415 В вне зависимости от применяемых схемных решений и отдаваемого тока нагрузки.

Техника промышленного назначения может иметь более высокое выходное напряжение: вплоть до 6 – 10 кВ.

Походы к выбору стабилизатора

Перечень параметров, по которым выбирают стабилизаторы, обязательно включает:

  • мощность нагрузки или отдаваемый номинальный ток;
  • выходное напряжение;
  • тип сети (однофазная – трехфазная).

Большую помощь окажет информация о стабильности сети, уровне импульсных помех в ней.

При определении номинальной мощности суммируют мощности всех потребителей защищаемой сети. Для оценки мощности номинальной нагрузки токовую нагрузочную способность входного автомата умножают на 220 В.

При прочих равных условиях выбирают однофазные модели линейных стабилизаторов, учитывают, что модульные конструкции более удобны в обслуживании.

Учитывают эстетические параметры и количество выходных розеток, рисунок 5.

Вариант исполнения однофазного стабилизатора

Рис.5. Вариант исполнения однофазного стабилизатора

Окончательный выбор целесообразно выполнять с учетом производителя и места изготовления. Для определения качества техники юго-восточного производства, выпускаемой без контроля со стороны ведущих западных компаний, имеет смысл изучить профильные форумы. Такой подход позволяет сделать адекватный вывод о качестве прибора.

Кроме технических параметров обязательно принимают во внимание доступность сервисного обслуживания.

Следует учесть, что в продаже имеется большой выбор 220-вольтовых однофазных и 380-вольтовых трехфазных устройств. Стабилизаторы с широким диапазоном регулировки и выходным напряжением других номиналов часто поставляются под заказ.

Заключение.

Промышленность выпускает широкую гамму бытовых стабилизаторов напряжения, что позволяет произвести выбор конкретной модели устройства с учетом конкретной области применения.

Читайте так же:
Как отрегулировать клапана с электронным зажиганием

Массовый характер рынка стабилизаторов определяет большое количество работающих на нем производящих предприятий, предлагающих свою продукцию через партнерскую сеть. Поэтому перед покупкой следует выполнить тщательный многокритериальный отбор продукта.

Все своими руками

Обновления в Вконтакте Обновления в Одноклассниках Обновления в FaceBook

Схема лабораторного блока питания

Здравствуйте. На днях решил, что мне срочно не хватает еще одного блока питания. Буду собирать давно проверенную схему регулируемого стабилизированного блока питания и использовать в качестве лабораторного блока питания.
Выбрал эту схему, так как собираю ее 4 раз и не разу не удалось сжечь силовой транзистор, запаса хватает с головой.
Преимущества самодельного лабораторного блока питания:
Плавная регулировка напряжения от 0 до 30В, а при доработке вытянет до 50В
Стабилизация тока от 0 до 1А, а при параллельной установке силовых транзисторов, ток ограничен вашей фантазией.
Есть защита от короткого замыкания. Блок питания в режиме стабилизации тока с нулем на выходе
Радует низкий уровень пульсаций на выходе БП
Схема лабораторного блока питания

Может кто-то узнает эту схему, это схема регулируемого блока питания со стабилизацией напряжения, именуемый ПиДБП V14 с форума Паяльник.

Печатная плата лабораторного блока питания

Подобную схему, очень-очень давно, я собирал для зарядного устройства из двух компараторов, но были проблемы со стабилизацией напряжения из-за того, что у меня компараторы работали паралельно. В поисках решения проблемы я нашел эту схему лабораторного БП, переделал под свои детали и полюбил ее за простоту и надежность. Кстати, спустя время вышла версия 16, в которой ребята тоже использовали параллельное включение и решили проблему со стабилизацией.
16 версию потом соберу, а пока V14 вкратце. Напряжение с моста фильтруется конденсаторами, емкость чем больше тем лучше. Источник опорного напряжения собран на стабилизаторе TL431 усиленный транзистором.
Ток стабилизируется компаратором DA1.2. Напряжение с токового шунта сравнивается с опорным с резисторного делителя R16R17R18.
Напряжение стабилизируется компаратором DA1.1 сравнивая напряжения с делителя R12R14R15 и делителя R10R11. ИОН-ом для питания R10R11 служит выход компаратора DA1.2.
Ну и остался транзисторный каскад. Я использовал 2SC945, КТ814 и КТ803А на массивный радиатор
Была изготовлена компактная печатная плата под LM358, в оригинальной схеме LM324.
Печатная плата лабораторного блока питания

Плата протравилась быстро, потом просверлилась самодельным сверлильным станком и начался процес сборки лабораторного блока питания

Для безопасной сборки буду собирать схему частями. Для начала собрал на плате все компоненты кроме транзистора VT3 и операционного усилителя LM358. Временно устанавливаю перемычку паралельно резистору R8 и подаю питание 21В от другого лабораторного блока питания. Блок питания не ушел в защиту и это уже радует, потребление миллиамперы и можно что то попробовать замерять. А мерять буду опорное напряжение которое в норме 12.6В, а так же отсутствие напряжение на выходе схемы БП.

Опорное напряжение и ноль на выходе
Вот схематически изобразил, где ставить перемычку и карта напряжений.
Установка перемычки и проверка ИОН 12В
Так же можно замерить напряжение на делителе R16R17R18, оно должно регулироваться от 30мВ до 500мВ.
Опорное напряжение для компаратора тока
Теперь установлю перемычку от ИОН к R7 как показано на схеме
Установка перемычки для проверки транзисторного каскада
Должно появиться напряжение почти равное напряжению питания, если так то все нормально.
Установка перемычки для проверки транзисторного каскада замер напряженийНу если все хорошо работает, то запаиваю компаратор и транзистор. Транзистор на проводах вывел на радиатор. Установил конечно через термопасту.
Сборка лабораторного блока питания
Подключаю опять 21В от лабораторного блока питания и пробую менять напряжение на выходе и если все регулируется пора к серьезным испытаниям.
Добавляю в схему диодный мостик и трансформатор со вторичкой 30В. Включаю в сеть через лампу, после моста 42В, на ИОН как и было 12.6В. Напряжение регулируется от 0 до 31В, исключу из цепи защитную лампу и ток проверю самодельной электронной нагрузкой.
Проверка регулируемого блока питания электронной нагрузкой
Ток регулируется от 35мА и максимальный ток 1А при напряжении на выходе 31В.
При этом на диодном мосте под нагрузкой 33В, как раз 2В хватает на падение на транзисторах. К тому же заменю один кондей 2200мкФ на 4700мкФ и картина будет еще краше. На фото напряжение на диодном мосте под нагрузкой и без
Напряжение питания под нагрузкой и без
Ну и еще один тест который на пену выведет диванных экспертов — это КЗ блока питания через амперметр.
Короткое замыкание блока питания
Если не в курсе, то ток во всей цепи одинаковый и при таком включении амперметра, амперметр покажет ток проходящий по резистору, которым в данной ситуации являются все проводники, от транзистора до шунта.

Настройка регулируемого лабораторного блока питания
Что касаемо настройки, так тут делов на 5 сек. Подстроечным резистором R15 устанавливается максимальное выходное напряжение. Я только щас заметил, что этот резистор на фото отсутствует. В пробном варианте платы вместо него установил обычный резистор и что бы сократить время на подбор, я его паял с другой стороны платы.
Максимальный ток определяется шунтом R20. При максимальном токе на нем падение должно быть 500мВ. Что бы долго не считать: 0.5Ом-1А, 0.33Ом-1.5А, 0.25Ом-2А, 0.16Ом-3А, 0.1Ом-5А. Чем больше ток, тем больше силовых транзисторов и больше размер радиатора

Читайте так же:
Регулировка контактного зажигания нептун 23

Ну на этом наверное всем удачи с повторением схемы лабораторного блока питания.
Если вам нравятся мои статьи подписывайтесь на обновления, кнопки вверху страницы. А так же добавьте эту статью в закладки, что бы не потерять, кнопки под статьей справа

Электромеханический (сервоприводный) стабилизатор напряжения

Электромеханический стабилизатор напряжения, так же известный как сервоприводный, – это один из самых распространенных видов стабилизаторов, который, благодаря своей конструкции и характеристикам, обладает очень интересным набором возможностей и в некоторых ситуациях просто не имеет альтернативы.

Давайте подробнее рассмотрим, как работает сервоприводный стабилизатор, как он устроен, какие у него сильные и слабые стороны и многое другое об этом устройстве.

Устройство электромеханического стабилизатора

Устройство электромеханического стабилизатора напряжения

Главным элементом любого электромеханического стабилизатора напряжения является регулируемый автотрансформатор (обязательно читайте нашу статью о нём), перемещение подвижного контакта по его обмотке выполняется автоматически, с помощью сервопривода.

Так же в стабилизаторе обязательно имеется блок управления – небольшая плата с определенным набором компонентов. Кроме этого, конечно же, есть коммутационные провода, предохранители, индикаторы и другие вспомогательные мелкие элементы, без которыз работы любого электроприбора невозможна.

Схема электромеханического стабилизатора

Схема электромеханического стабилизатора напряжения

На укрупненной схеме сервоприводного стабилизатора, по которой можно легко понять принцип его работы, отражены оба основных компонента и их взаимодействие:

1. Регулируемый автотрансформатор

2. Плата управления

Принцип работы электромеханического стабилизатора

Принцип действия сервоприводного стабилизатора напряжения легко понять зная, как работает регулируемый автотрансформатор. Если коротко, то получается следующее:

1. Электрический ток поступает из сети, на плату управления, где встроенный вольтметр измеряет его напряжение.

2. В зависимости от полученных результатов подаётся сигнал на сервопривод, который перемещает подвижный контакт по обмотке, тем самым меняя коэффициент трансформации автотрансформатора, пока на выходе не будет 220В. Или, проще говоря, изменяется количество витков первичной обмотки, при этом вторичная обмотка не изменняется.

Как видите, конструкция довольно простая, а как известно, чем меньше разнообразных элементов участвуют в работе, тем выше общая надежность устройства. Давайте же рассмотрим все основные достоинства и недостатки электромеханического стабилизатора напряжения.

Плюсы и минусы электромеханического стабилизатора напряжения

ПЛЮСЫ

— Невысокая стоимость

Сервоприводные модели одни из самых доступных видов стабилизаторов из существующих, в частности благодаря простоте своей конструкции. Обычно, они продаются по цене лишь не на много более высокой, чем релейные стабилизаторы, при этом обладают рядом недостижимых для релейных моделей характеристик.

— Высокая точность стабилизации

Благодаря тому, что механический стабилизатор не имеет фиксированных отводов от автотрансформатора, а может сам формировать нужное количество витков обмотки и соответственно достаточно гибко изменять коэффициент трансформации, точность стабилизации получатся очень высокой.

— Плавная стабилизация

Так как изменение положения подвижного контакта производится с помощью сервопривода, который плавно перемещает его по обмотке регулируемого автотрансформатора — не происходит резких скачков напряжения и даже кратковременного обрыва контакта, чего очень боятся чувствительные электронные компоненты электрооборудования.

Регулируемый автотрансформатор

— Устойчивость к кратковременным перегрузкам

Конструкция механического стабилизатора позволяет ему кратковременно выдерживать скачки напряжения в сети, даже если оно увеличивается в два раза относительно номинального.

— Устойчив к помехам в напряжении, частоте и форме тока

Использование автотрансформатора, как основного элемента стабилизации напряжения, позволяет не бояться изменений частоты и формы тока.

— Компактность

Минимальное количество используемых в механическом стабилизаторе компонентов, позволяет сделать его достаточно компактным. Его размер формируется в большей степени из размера регулируемого автотрансформатора.

— Высокий коэффициент полезного действия (КПД)

На некоторых форумах и информационых ресурсах, рассказывающих о электромеханических стабилизаторах, встречается мнение, что они имеют низкий КПД, но это не так. Практически все виды стабилизаторов в основе которых лежит автотрансформатор: релейные, механические, теристорные, симисторные, гибридные, имеют достаточно высокий КПД, 94-98%.

МИНУСЫ

— Наличие движущихся деталей

Самым слабым узлом электромеханического стабилизатора является именно механизм перемещения контакта по обмотке, он очень чувствителен к загрязнениям и пыли, да и просто подвижные детали имеют наибольший естественный износ при работе. Данный недостаток автоматически порождает следующий.

Читайте так же:
Регулировка оборотов кулера резистором

— Необходимости регулярного технического обслуживания

Наличие движущихся деталей вынуждает периодически обслуживать сервоприводные стабилизаторы — чистить их, менять щетки и т.д. Отнести данные стабилизаторы к устройствам — купил, установил и забыл нельзя, они периодически требуют внимания к себе.

— Шумность

Передвижение щеток и работа сервопривода создают определенный шум, он не такой навязчивый и громкий как, например, щелчки при переключении релейного стабилизатора, но всё же ощутимый и создаёт некоторый дискомфорт, когда стабилизатор находится с вами в одной комнате.

— Скорость реагирования

Одним из самых значимых недостатков механических стабилизаторов является низкая скорость реагирования на изменения напряжение. Это и неудивительно, ведь сервопривод не может моментально передвинуть токосниматель по обмотке, на это ему требуется определенное время, у многих моделей изменение напряжения происходит всего по 10-15 вольт в секунду. Таким образом, если произойдет резкое падение входного напряжение сразу на 60 вольт, стабилизатор нормализуют его лишь через 4-6 секунд, всё это время электрооборудование будет работать при низком напряжении.

— Ограниченный диапазон рабочих температур

В среднем, рабочий диапазон сервоприводных стабилизаторов лежит в пределе -5 до +40 градусов. Таким образом количество мест, где возможно их применение или установка значительно ограничено.

— Боязнь пыли

Наличие подвижного токоснимателя и электродвигателя делают механический стабилизатор очень чувствительным к попаданию внутри него пыли, которая значительно увеличивает вероятность поломки. Из-за этого, например, нельзя устанавливать сервоприводные стабилизаторы на производстве, в цеху.

Где чаще всего используется электромехнический стабилизатор

Из всех перечисленных сильных и слабых сторон механического стабилизатора, чаще всего его выбирают именно из-за его высокой точности стабилизации при низкой цене. Одним же из ключевых недостатков, который вынуждает потребителей выбирать модели другого типа, является низкая скорость стабилизации.

Таким образом, чаще всего сервоприводный стабилизатор покупают тогда, когда требуется именно точность нормализации, а скорость не так важна.

Так, например, если у вас в квартире или на даче, стабильно низкое или высокое напряжение, при этом не бывает резких скачков или падений, а если и происходят изменения, то они достаточно плавные – вы смело можете брать электромеханический стабилизатор, он с высокой точностью выровняет входящее напряжение и ваше электрооборудование будет работать в максимально комфортных условиях.

Электромеханический стабилизатор напряжения

Это особенно важно чувствительным к качеству напряжения в сети устройствам, например, измерительному оборудованию, лампам освещения, электроприборам в которых установлены электромоторы или происходит нагрев, циркуляционным насосам, холодильникам, стиральным машинам, электроинструменту и многим другим.

Так например стабилизаторы другого типа — релейные, имеют точность всего 8%, и даже при входящем напряжении в 205 Вольт передают его без изменений потребителям, которые нередко не рассчитаны на работу в таком режиме. Поэтому, если у вас в сети нет резких скачков или падений напряжения, оно постоянно низкое или высокое, стоит присмотреться к электромеханическим стабилизаторам, пусть они несколько дороже, но это с лихвой покрывает точность стабилизации.

Примеры удачных моделей электромеханических стабилизаторов

Если вы решили приобрести именно сервоприводный стабилизатор , для вас я, как обычно, выкладываю небольшой список удачных, на мой взгляд, моделей электромеханических стабилизаторов напряжения, которые я советую покупать своим клиентам. При этом я опираюсь как на собственный опыт, так и на мнение своих коллег, поставщиков и нередко читаю анонсы, обзоры и просто отзовы на форумах об этом оборудовании. В своих ценовых нишах они практически не имеют конкурентов, при этом доступны для покупки практически в любом уголке страны.

1. РЕСАНТА АСН-5000/1-ЭМ (

Электромеханический стабилизатор напряжения РЕСАНТА АСН-5000/1-ЭМ

Ресанта один из самых распространенных на рынке и популярных у потребителя стабилизаторов напряжения. Производится в Китае. Подброее о его характеристиках и актуальной стоимости вы можете узнать по ссылке ниже.

2. ЭНЕРГИЯ NEW LINE 5000 (

5800 рублей)

ehnergiya new line 5000Российский электромеханический стабилизатор ЭНЕРГИЯ АСН-5000, славится своей надежностью и неприхотливостью. Развитая диллерская сеть и сервисное обслуживаение.

3. Rucelf SDW.II-6000 (

Электромеханический стабилизатор напряжение Rucelf SDW.II-6000

Ну и конечно же стоит отметить Rucelf SRW.II-6000. Данный производитель, думаю, не требует представления, Rucelf выбирают за его надежность, точность и высокое качество.

А если вы знаете еще достойных производителей электромеханических стабилизаторов или просто удачные модели — обзательно пишите о них в комментариях. Кроме того, задавайте свои вопросы, делитесь мнением, оставляйте замечания, буду рад ответить всем.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector