4h4-auto.ru

4х4 Авто
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулятор оборотов коллекторного двигателя: устройство и изготовление своими руками

Регулятор оборотов коллекторного двигателя: устройство и изготовление своими руками

В любом современном электроинструменте или бытовом приборе используется коллекторный двигатель. Это связано с их универсальностью, т. е. способностью работать как от переменного, так и от постоянного напряжения. Ещё одно преимущество заключается эффективном пусковом моменте.

Однако высокая частота оборотов коллекторного двигателя устраивает далеко не всех пользователей. Для плавности пуска и возможности менять частоту вращений был изобретён регулятор, который вполне возможно изготовить своими руками.

Принцип работы и разновидности коллекторных двигателей

В схеме можно использовать обычный бытовой регулятор для осветительных ламп.

Каждый электродвигатель состоит из коллектора, статора, ротора и щёток. Принцип его работы довольно прост:

Коллекторный электродвигатель - из чего он состоит?

  1. Ток подаётся на статор и ротор, соединённые друг с другом.
  2. Образуется магнитное поле.
  3. Из-за воздействия магнитного напряжения, ротор начинает вращаться.
  4. Щётки (обычно их изготавливают из графита) передают напряжение на ротор.
  5. При изменении направления тока в статоре или роторе, вращение вала происходит в другую сторону.

Помимо стандартного устройства также существуют:

Схема устройства электродвигателя однофазного: достоинства и недостатки.

  • Электродвигатели последовательного возбуждения — обладают большей устойчивостью к перегрузкам (чаще всего используются в бытовых устройствах).
  • Изделия параллельного возбуждения — имеют большее количество витков и небольшое сопротивление.
  • Однофазные двигатели — лёгкость в изготовлении и широкий диапазон для применения, но низкий КПД.

Устройство регулятора

В мире существует множество схем таких устройств. Тем не менее всех их можно разделить на 2 группы: стандартные и модифицированные изделия.

Стандартное устройство

Типичные изделия отличаются простотой в изготовлении идинистора, хорошей надёжностью при изменении оборотов двигателя. Как правило, такие модели основываются на тиристорных регуляторах. Принцип работы подобных схем достаточно прост:

Что такое симистор силовой, и где его применяют.

  1. Заряд идёт на конденсатор.
  2. Через переменный резистор идёт напряжение пробоя Динистор.
  3. Далее он «пробивается».
  4. «Открывается » симистор, который отвечает за нагрузку.
  5. Чем выше будет напряжение, тем чаще будет «открываться симистор».

Таким образом, происходит регулировка оборотов коллекторного двигателя. В большинстве случаев подобную схему используют в зарубежных бытовых пылесосах. Однако следует знать, что такой регулятор оборотов не обладает обратной связью. Поэтому при изменении нагрузки придётся настраивать обороты электродвигателя.

Изменённые схемы

В коллекторном двигателе применяют регуляторы мощности разных конструкций.

Конечно, стандартное устройство устраивает многих любителей регуляторов оборотов «покопаться» в электронике. Однако, без прогресса и улучшения изделий мы бы до сих пор жили в каменном веке. Поэтому постоянно изобретаются более интересные схемы, которые с удовольствием применяют многие производители.

Чаще всего используются реостатные и интегральные регуляторы. Как понятно из названия, первый вариант основан на реостатной схеме. Во втором же случае применяется интегральный таймер.

Реостатные отличаются эффективностью в смене количества оборотов коллекторного двигателя. Высокая эффективность обусловлена силовыми транзисторами, которые забирают часть напряжения. Таким образом, снижается поступление тока и двигатель работает с меньшим усердием.

Видео: устройство регулятора оборотов с поддержанием мощности

Главный недостаток такой схемы заключается в большом объёме выделяемого тепла. Поэтому для бесперебойной работы, регулятор должен постоянно охлаждаться. Притом охлаждение устройства должно быть интенсивным.

Можно применять интегральные схемы от разных разработчиков.

Иной подход реализован в интегральном регуляторе, где за нагрузку отвечает интегральный таймер. Как правило, в подобных схемах используются транзисторы практически любых наименований. Это связано с тем, что в составе имеется микросхема, обладающая большими значениями выходного тока.

Если нагрузка меньше 0,1 ампера, то всё напряжение поступает прямо на микросхему в обход транзисторов. Однако для эффективной работы регулятора необходимо, чтобы на затворе было напряжение 12В. Поэтому электроцепь и напряжение самого питания должно соответствовать этому диапазону.

Обзор типичных схем

Схема двигателя с регулятором частоты вращения.

Регулировать вращения вала электродвигателя малой мощности можно посредством последовательного соединения резистора питания с отсутствие. Однако у такого варианта имеется очень низкий КПД и отсутствие возможности плавного изменения скорости. Чтобы избежать такой неприятности, следует рассмотреть несколько схем регулятора, которые применяются чаще всего.

Особенности первого варианта:

В схеме применяются разные полевые транзисторы.

  • На ШИМ транзисторе имеется генератор пилообразного напряжения с частотой 150 Гц.
  • В роли компаратора выступает операционный усилитель.
  • Для изменения скорости используют переменный резистор, который управляет длительностью импульсов.

Как известно, ШИМ имеет постоянную амплитуду импульсов. Кроме того, амплитуда идентична напряжению питания. Следовательно, электродвигатель не остановится, даже работая на малых оборотах.

Второй вариант аналогичен первому. Единственное отличие, что в качестве задающего генератора используется операционный усилитель. Этот компонент имеет частоту 500 Гц и занимается выработкой импульсов, имеющих треугольную форму. Регулировка также осуществляется переменным резистором.

Как сделать своими руками

Как работает теристор - наглядная схема.

Если нет желания тратиться на приобретение готового устройства, его можно изготовить самостоятельно. Таким образом, можно не только сэкономить деньги, но и получить полезный опыт. Итак, для изготовления тиристорного регулятора потребуется:

  • паяльник (для проверки работоспособности);
  • провода;
  • тиристор, конденсаторы и резисторы;
  • схема.

Как видно по схеме, регулятором контролируется только 1 полупериод. Однако для тестирования работоспособности на обычном паяльнике этого будет вполне достаточно.

Если знаний по расшифровке схемы недостаточно, можно ознакомиться с текстовым вариантом:

Регулятор оборотов двигателя коллекторного типа, схема.

  1. Питание от сети идёт на конденсатор.
  2. Конденсатор получает полный заряд и начинает работу.
  3. Нагрузка передаётся на нижний кабель и резисторы.
  4. С положительным контактом конденсатора соединён электрод тиристора.
  5. Один достаточный заряд напряжения
  6. Открывается второй полупроводник.
  7. Тиристор пропускает через себя нагрузку, полученную с конденсатора.
  8. Конденсатор разряжается и повторяет полупериод.

Использование регуляторов позволяет более экономично использовать электродвигатели. В определённых ситуациях такое устройство можно изготовить самостоятельно. Однако для более серьёзных целей (например, контроля оборудования для отопления) лучше приобрести готовую модель. Благо, на рынке есть широкий выбор таких изделий, а цена вполне демократичная.

Регуляторы оборотов с поддержанием мощности в двигателях

Регулятор оборотов с поддержанием мощности

Практически во всех бытовых приборах и электроинструментах используется коллекторныйдвигатель. В более новых моделях болгарок, шуруповертов, ручных фрезеров, пылесосов, миксеров и других присутствует регулировка оборотов двигателя, но в более поздних моделях такой функции нет. Такими инструментами и бытовыми приборами не всегда удобно работать, и поэтому существуют регуляторы оборотов с поддержанием мощности.

Читайте так же:
Пшм с регулировкой оборотов

Виды двигателей и принцип работы

Регулятор оборотов коллекторного двигателя 220в своими руками

Двигатели делятся на три типа: коллекторный, асинхронный и бесколлекторный. В большинстве электроинструментов стоит первый тип. Этот электродвигатель имеет довольно компактный размер. Его мощность значительно выше, чем у асинхронного, а цена довольно низкая. Что касается асинхронных, то этот тип в основном используется в металлообрабатывающей отрасли, а также широкое распространение они получили в угледобывающих шахтах. Довольно редко их можно встретить в быту.

Бесколлекторный электродвигатель используется там, где нужны большие обороты, точное позиционирование и малые размеры. Например, в различной медицинской технике, авиамоделировании. Принцип работы довольно прост. Если рамку прямоугольной формы, которая имеет ось вращения, поместить между плюсами постоянного магнита, то она начнет вращаться. Направление зависит от направления тока в рамке. В составе этого типа присутствуют якорь и статор. Якорь вращается, а статор стоит неподвижно. Как правило, на якоре стоит не одна рамка, а 4,5 или более.

Асинхронный двигатель работает по другому принципу. Благодаря эффекту переменного магнитного поля в статорных катушках он приводится во вращение. Если углубиться в курс физики, то можно вспомнить, что вокруг проводника, через который проходит ток, создается своеобразное магнитное поле, заставляющее вращаться ротор.

Схема регулятора оборотов коллекторного двигателя 220в

Принцип работы бесколлекторного типа основан на включении обмоток так, чтобы магнитные поля статора и ротора были ортогональны друг другу, а вращающий момент регулируется специальным драйвером.

На рисунке отчетливо видно, что для перемещения ротора нужно выполнить необходимую коммутацию, но и регулировать обороты не представляется возможным. Тем не менее бесколлекторный двигатель может очень быстро набирать обороты.

Устройство коллекторного двигателя

Коллекторный электродвигатель состоит из статора и ротора. Ротором называется часть, которая

Регулятор оборотов с поддержанием мощности схема

вращается, а статор является неподвижным. Еще одной составляющей электродвигателя являются графитовые щетки, по которым ток течет к якорю. В зависимости от комплектации могут присутствовать датчики Холла, которые дают возможность плавного запуска и регулировки оборотов. Чем выше подаваемое напряжение, тем выше обороты. Этот тип может работать как от переменного, так и от постоянного тока.

По классификации коллекторные двигатели можно разделить на те, что работают от переменного и от постоянного тока. Их также можно разделить по типу возбуждения обмотки: двигатели с параллельным, последовательным и смешанным (параллельно-последовательным) возбуждением.

Типы регулировки

Существует довольно много вариантов регулировки оборотов. Вот основные из них:

  • Блок питания с регулировкой выходного напряжения.
  • Заводские устройства регулировки, которые идут изначально с электромотором.
  • Регуляторы на кнопочном управлении и стандартные регуляторы, которые просто ограничивают напряжение.

Эти типы регулировки плохи тем, что с уменьшением или увеличением напряжения падает и мощность. В некоторых электроинструментах это допустимо, но, как показывает практика, в большинстве случаев это является неприемлемым из-за сильного падения мощности и, соответственно, КПД.

Наиболее приемлемым вариантом будет регулятор на основе симистора или тиристора. Мало того что такой регулятор не уменьшает мощность при уменьшении напряжения, он еще и позволяет осуществлять более плавный пуск и регулировку оборотов. К тому же такую схему можно сделать своими руками. Ниже изображен регулятор оборотов с поддержанием мощности. Схема собрана на базе симистора BTA 41 800 В.

Схема регулятора оборотов двигателя постоянного тока 12в

Все номиналы электроэлементов обозначены на схеме. Это схема после сборки, работает довольно стабильно и обеспечивает плавную регулировку коллекторного двигателя. При уменьшении выходного напряжения мощность не уменьшается, что является весомым плюсом.

При желании можно собрать регулятор оборотов коллекторного двигателя 220 В своими руками. Эта схема собрана на базе симистора ВТА26−600, который предварительно необходимо установить на радиатор, так как при нагрузке этот элемент довольно сильно греется.

К готовой схеме возможно подключить электромотор, мощность которого не превышает 4 кВт.

Схема выглядит следующим образом.

Она успешно справится с регулировкой таких электроинструментов, как дрель, болгарка, циркулярка, лобзик. При желании можно использовать схему в качестве регулятора мощности ТЭН-ов, обогревателей и в качестве диммера. К минусам можно отнести невозможность регулировки мощности приборов, которые питаются от постоянного тока.

Регуляторы мощности постоянного тока

Иногда возникает потребность в регулировке оборотов коллекторного двигателя постоянного тока.

Регулятор оборотов электродвигателя 12в своими руками

Если потребитель не имеет большой мощности, то возможно последовательно подсоединить переменный резистор, но тогда КПД такого регулятора резко упадет. Существуют схемы, при помощи которых возможно довольно плавно регулировать обороты, не уменьшая КПД. Такой регулятор подойдет для изменения яркости различных ламп, напряжения питания, не превышающего 12 В. Эта схема также выполняет роль стабилизатора частоты вращения, при изменении механической нагрузки на вал обороты остаются неизменными.

Эта схема регулятора оборотов двигателя постоянного тока 12 В вполне подойдет для регулировки и стабилизации оборотов двигателей с током, не превышающим 5 А. В эту схему входит драйвер на биполярных транзисторах и таймер 7555, что обеспечивает стабильную работу и плавную скорость регулировки. Цена на детали довольно низкая, а это является несомненным плюсом. Можно также собрать регулятор оборотов электродвигателя 12 В своими руками.

Асинхронный двигатель и регулятор оборотов

Схема регулировки оборотов двигателя постоянного тока 12в

Как правило, этот тип применяется на различных производствах, начиная от шахт и заканчивая металлообрабатывающими отраслями. Например, в угольных шахтах для плавного пуска конвейерных лент используется пускатель АПМ, в который встроено устройство на тиристорах, позволяющее плавно запустить конвейер. Асинхронный однофазный двигатель применяется также в автомобилях, вентиляторах печек, двигателях, которые приводят в движение дворники, бытовых вентиляторах, питающихся от напряжения 220 В. В машине двигатели работают от постоянного напряжения 12 вольт, но плавный запуск в них не предусмотрен.

Для регулировки оборотов асинхронного двигателя применяются так называемые частотные преобразователи. Эти преобразователи позволяют кардинально менять форму и частоту сигнала. Как правило, такие преобразователи собраны на базе мощных полупроводниковых транзисторов и импульсных модуляторов, а всеми элементами управляет ШИМ-контроллер.

Читайте так же:
Регулировка оборотов инжектора 21099

Следует помнить: чем плавней разгон двигателя, тем меньше он испытывает перегрузок. Это касается редукторов, конвейеров, мощных насосов, лифтов. Вот одна схема регулятора оборотов асинхронного двигателя 220 В.

С помощью этой схемы можно регулировать обороты двигателей, мощность которых не превышает 1 тыс. Вт. При сборке этой схемы есть нюансы, которые необходимо учесть:

Регуляторы оборотов с поддержанием мощности в двигателях

  • Тип соединения «треугольник».
  • Необходим драйвер трехфазного моста IR2133.
  • Микроконтроллер AT90SPWM3B.
  • Для прошивки микроконтроллера необходим программатор.
  • Мощные транзисторы IRG4BC30W или их аналоги.
  • ЖК-дисплей в качестве индикатора.
  • Импульсный блок питания, который можно купить или собрать собственноручно.

Из-за значительного нагрева диодный мост и силовые транзисторы необходимо установить на радиатор. Если предполагается подключение двигателя мощностью до 400 Вт, то термодатчик ставить необязательно, а для управления можно использовать опторазвязку.

Чтобы увеличить срок службы различных видов двигателей, рекомендуется пользоваться регуляторами оборотов, решающими большое количество проблем.

Как правильно подключить регулятор оборотов к электродвигателю

Регулятор скорости вращения двигателя может понадобится, если вы собираете станок или пытается усовершенствовать заводской. Неправильное подключение чревато падением мощности или даже поломкой мотора. Ниже вы узнаете, как установить и собрать регулятор оборотов с поддержанием мощности.

Схема регулятора оборотов для электродвигателя

Конечно, регулятор оборотов электродвигателя на 220в можно купить в магазине, но:

  1. В магазинах сложно найти платы для сетевого напряжения (основная часть рынка – регуляторы до 35 вольт).
  2. Те, что продаются для сетевых двигателей имеют посредственное качество. Мощность и скорость они не поддерживают, поэтому для станков (например, токарного) они не подходят в принципе.
  3. Промышленные контроллеры с поддержанием скорости и мощности очень дороги, и купить их сложно.

Почему бы тогда не собрать? Все детали продаются в любом радиомагазине, к тому же программировать или прошивать ничего не понадобится, хоть и понадобится микросхема.

Технические характеристики контроллера

Схема будет иметь следующие характеристики:

  1. Рабочее напряжение – от 110 до 230 вольт.
  2. Возможности регулировки – 9 – 99%. В целом, этот показатель зависит от выбранного димера.
  3. Нагрузка – до 2,5 киловатт.
  4. Рабочая мощность – 300 ватт без радиатора. Если установить хорошее охлаждение, можно ее увеличить на 20-25%.

Эта схема регулятора оборотов коллекторного двигателя на 220в достаточно тихая и имеет плавный пуск. Собрать же ее достаточно просто.

Простейшая схема регулятора

Ориентируйтесь на эту схему. Чтобы уменьшить обороты электродвигателя, необходим ШИМ модулятор, он же симистор. Это микросхема, которая модулирует ШИМ-сигнал, позволяющий задать собственное частоту.

В этой схеме роль модулятора играет микросхема U2008B. Это недорогая плата предназначена специально для регулировки оборотов асинхронного двигателя.

Как пишет Сайт компании электрические системы, также понадобится диод и резистор, чтобы снизить напряжение. На схеме они изображены со знаками D1 и R1. Также, чтобы отфильтровать поступающее электричество, необходим силовой конденсатор, обозначенный С1.

Р1, R5 и R3 – это делители напряжения, предназначенные для регулирования напряжения. Второй резистор необходим, чтобы синхронизировать внутренние блоки двигателя с симистором.

Чтобы частотный регулятор был безопасным, рекомендуется установить обычный плавкий предохранитель на 1,5 ампера.

Если вы хотите сделать профессиональную плату, возьмите эту схему для печати:

Останется только перенести ее на фольгированный текстолит и вытравить. Посмотреть инструкцию можно здесь. Цена вопроса такого регулятора – 200 рублей.

Заводские регуляторы

В некоторых случаях выгоднее взять регулятор оборотов коллекторного или асинхронного двигателя, если вы собираетесь модернизировать промышленное оборудование.

Наиболее распространенные модели:

1 Motor Speed Controller 400W. Недорогой (1300 рублей) ШИМ регулятор с простым управлением. На главной панели есть кнопка включения/выключения и 10 ступенчатый диммер. Обладает высокой производительностью и способен управлять двигателями до 400 ватт. Внутри присутствует хорошая система охлаждения и защиты. Для него ниже будет описана инструкция подключения.

2 KLS 4000-A1. Пожалуй, один из мощнейших китайских регуляторов вращения. Подключения, как такового, не требует. Достаточно вставить вилку в розетку на корпусе. Присутствует экран, где отображаются частота оборотов в минуту. Пожалуй, это наиболее удобный способ регулировки оборотов коллекторного двигателя без потери мощности. Цена начинается от 2400 рублей из Китая. В России продается с наценкой в 1,5 раза.

У российских домашних умельцев особым спросом пользуются тиристорные регуляторы оборотов.

С виду они похожи на обычные реостаты, но обладают большим запасом мощности. Впрочем, их можно самостоятельно по этой схеме.

Минусов у такого вида регуляторов достаточно много:

  1. Пропуски полупериодных волн. В связи с этим, двигатель во время работы будет постоянно шуметь. На работе двигателя это не скажется, но вот удобство работы – сомнительное.
  2. Для двигателей большой мощности они в принципе не подходят. Они удобны для запуска небольших моторов, вроде вентиляторных. Про двигатели от стиральной машины можно забыть.
  3. Стабилизация мощности достаточно низкая, желательно поставить дополнительный конденсатор, чтобы сгладить скачки напряжения.

Но есть и достоинства:

  1. Цена. Купить их можно буквально за 150-200 рублей в любом радиомагазине. Из Китая можно заказать рублей за 75.
  2. Малый размер и компактность. Их можно спрятать, они не занимают лишнего места на столе и помещаются в карман.

Способы, как подключить регулятор оборотов

Как же подключить регулятор оборотов? Рассмотрим Motor Speed Controller 400W по 3 причинам:

  1. Это наиболее популярный контроллер скоростей.
  2. С его подключением возникают проблемы, из-за разметки на китайском языке.
  3. Подключение почти не отличается от того, чтобы был собран своими руками.

Для начала, стоит изучить схему подключения, напечатанная на боковинке регулятора или паспорте устройства.

Теперь необходимо воспользоваться распиновкой на задней панели. Понадобится выбрать необходимые выводы. Контакты CCW и COM всегда закорочены, трогать их не нужно. Для подключения понадобится задействовать 3 нижних контакта. АС

АС – это ноль и фаза (провода устанавливаются произвольно, все же ток переменный). В FG вставляется провод заземления, если оно есть.

Читайте так же:
Регулировка топливного насоса двигателя ямз 238

В общем, на этом подготовка закончена. Остается только вставить штекер от регулятора к клеммнику двигателя.

Рекомендуется в разрыв фазного провода поставить конденсатор.

Он поможет сгладить поступающее напряжение. Также не помешает установить ферритовый фильтр. Оно поможет сгладить помехи при работу.

Регулятор оборотов электродвигателя стиральной машины

Подключение регулятор оборотов электродвигателя д ля стиральной машины в первую очередь рекомендуется разобрать и проверить наличие симистора — силовой элемент. Он должен стоять на радиаторе. Если его нет, следует дополнительно установить, чтобы регулятор не перегревался. Радиатор смазывают термопастой для лучшего термоотделения.

После это регулятор собирают и подключают к двигателю согласно схеме, приведенной на корпусе. Это дает возможность регулировать, стабилизировать обороты, увеличивая амплитуду напряжения. При этом возрастает мощность устройства.

Как уменьшить частоту вращения электродвигателя

Некоторые ситуации требуют изменения оборотов двигателя от номинальных. Иногда требуется уменьшить обороты электродвигателя, потому что их увеличение негативно сказывается на подшипниковом аппарате. Способы изменения вращения зависят от модели электрической машины.

Характеристики электрических машин отличаются: постоянного и переменного тока, однофазные, трехфазные. Поэтому говорить нужно о каждом случае отдельно.

  • Простейший вариант
  • В цепи якоря
  • Для низкого напряжения

Простейший вариант

Как уменьшить частоту вращения электродвигателяЛегче всего изменять обороты электродвигателя постоянного тока. Они меняются простым изменением напряжения питания. Причем неважно где: на якоре или на возбуждении, но это касается только маломощных машин с минимальной нагрузкой. В основном управление скоростью вращения производят по цепи якоря. Более того, здесь возможно реостатное регулирование, если мощность мотора небольшая, или есть довольно мощный реостат.

Это самый неэкономичный вариант. Механические характеристики двигателя с независимым возбуждением самые невыгодные из-за больших потерь, результатом чего является падение механической мощности, КПД.

Еще одна возможность – введение реостата в обмотку возбуждения. Рассматривая характеристики двигателя с независимым возбуждением, увидим, что регулирование скорости вращения возможно только в сторону увеличения оборотов. Это происходит ввиду насыщения обмотки.

Итак, реостатное регулирование скорости вращения аппарата независимого возбуждения оправдано в системах с минимальной нагрузкой. Лучше всего, когда работа при таком включении буде периодической.

В цепи якоря

Как уменьшить частоту вращения электродвигателяЭто лучший вариант регулирования скорости мотора с независимым возбуждением. Частота вращения прямо пропорциональна подводимому к якорю напряжению. Механические характеристики не меняют своего угла наклона, а перемещаются параллельно друг другу.

Для осуществления этой схемы нужно цепь якоря подключить к источнику напряжения, которое можно менять.

Это возможно в электрических машинах малой или средней мощности. Двигатель большой мощности целесообразно подключить в схему с генератором напряжения независимого возбуждения.

Как уменьшить частоту вращения электродвигателя

В качестве привода для генератора используют обычный трехфазный асинхронник. Чтобы уменьшить обороты, достаточно на якоре понизить напряжение. Оно меняется от номинального и вниз. Эта схема имеет название «двигатель-генератор». Таким образом можно менять параметры на двигателе 220в.

Для низкого напряжения

Управление агрегатами на 12в проще из-за более низкого напряжения и как следствие, более доступных деталей. Вариантов подобных схем множество, поэтому важно понять сам принцип.

Такой двигатель имеет ротор, щеточный механизм и магниты. На выходе у него всего два провода, контролирование скорости идет по ним. Питание может быть 12, 24, 36в, или другое. Что нужно – это его менять. Лучше, когда в пределах от нуля до максимума. В более простых вариантах 12–0в не получится, другие варианты дают такую возможность.

Кто-то паяет радиоэлементы навесным монтажом, кто-то набирает печатную плату – это уже зависит от желания и возможностей каждого человека.

Как уменьшить частоту вращения электродвигателя

Этот вариант подойдет, если точность неважна: например, вентилятор. Напряжение меняется от 0 до 12 вольт, пропорционально меняется крутящий момент.

Другой вариант – со стабилизацией оборотов независимо от нагрузки на валу.

Как уменьшить частоту вращения электродвигателя

Питание 12 вольт, схема очень проста. Двигатель набирает обороты плавно, и также плавно их сбавляет так как напряжение на выходе меняется в пределах 12–0в. Как результат – можно убратькрутящий момент практически до нуля. Если потенциометр крутить в обратном направлении, мотор так же постепенно набирает обороты до максимума. Микросхема очень распространенная, ее характеристики тоже подробно описаны. Питание 12–18в.

Есть еще один вариант, только это уже не для 12, а для 24в питания.

Как уменьшить частоту вращения электродвигателя

Двигатель постоянного тока, питание – переменное, так как стоит диодный мост. При желании можно мост выбросить и запитывать постоянкой от своего блока питания.

От сети

Однофазные электродвигатели переменного тока также позволяют регулировать вращение ротора.

Коллекторные машины

Как уменьшить частоту вращения электродвигателяТакие моторы стоят на электродрелях, электролобзиках и другом инструменте. Чтобы уменьшить или увеличить обороты, достаточно, как и в предыдущих случаях, изменять напряжение питания. Для этой цели также есть свои решения.

Конструкция подключается непосредственно к сети. Регулировочный элемент – симистор, управление которого осуществляется динистором. Симистор ставится на теплоотвод, максимальная мощность нагрузки – 600 Вт.

Если есть подходящий ЛАТР, можно все это делать при помощи его.

Двухфазный двигатель

Как уменьшить частоту вращения электродвигателяАппарат, имеющий две обмотки – пусковую и рабочую, по своему принципу является двухфазным. В отличие от трехфазного имеет возможность менять скорость ротора. Характеристика крутящегося магнитного поля у него не круговая, а эллиптическая, что обусловлено его устройством.

Есть две возможности контролирования числа оборотов:

  1. Менять амплитуду напряжения питания (Uy);
  2. Фазное – меняем емкость конденсатора.

Такие агрегаты широко распространены в быту и на производстве.

Обычные асинхронники

Электрические машины трехфазного тока, несмотря на простоту в эксплуатации, обладают рядом характеристик, которые нужно учитывать. Если просто изменять питающее напряжение, будет в небольших пределах меняться момент, но не более. Чтобы в широких пределах регулировать обороты, необходимо довольно сложное оборудование, которое просто так собрать и наладить сложно и дорого.

Как уменьшить частоту вращения электродвигателя

Для этой цели промышленностью налажен выпуск частотных преобразователей, помогающих менять обороты электродвигателя в нужном диапазоне.

Читайте так же:
Размер щупа для регулировки клапанов классики

Асинхронник набирает обороты в согласии с выставленными на частотнике параметрами, которые можно менять в широком диапазоне. Преобразователь – самое лучшее решение для таких двигателей.

Измерения

Понятно, что число оборотов нужно как-то определять. Для этого используют тахометры. Они показывают число вращения на данный момент. Обычным мультиметром просто так измерить скорость не получится, разве что на автомобиле.

Как видно, на электрических машинах можно менять различные параметры, подстраивая их под нужды производства и домашнего хозяйства.

Электрика своими руками

егулировка оборотов электродвигателя часто бывает необходима как в производственных, так и каких то бытовых целях. В первом случае для уменьшения или увеличения частоты вращения применяются промышленные регуляторы напряжения – инверторные частотные преобразователи. А с вопросом, как регулировать обороты электродвигателя в домашних условиях, попробуем разобраться подробнее.

Необходимо сразу сказать, что для разных типов однофазных и трехфазных электрических машин должны применяться разные регуляторы мощности. Т.е. для асинхронных машин применение тиристорных регуляторов, являющихся основными для изменения вращения коллекторных двигателей, недопустимо.

Лучший способ уменьшить обороты вашего устройства – не в регулировке частоты вращения самого движка, а посредством редуктора или ременной передачи. При этом сохранится самое главное – мощность устройства.

Немного теории об устройстве и области применения коллекторных электродвигателей

Электродвигатели этого типа могут быть постоянного или переменного тока, с последовательным, параллельным или смешанным возбуждением ( для переменного тока применяется только первые два вида возбуждения).

Как уменьшить частоту вращения электродвигателя

Коллекторный электродвигатель состоит из ротора, статора, коллектора и щеток. Ток в цепи, проходящий через соединенные определенным образом обмотки статора и ротора, создает магнитное поле, заставляющее последний вращаться. Напряжение на ротор передается при помощи щеток из мягкого электропроводного материала, чаще всего это графит или медно-графитовая смесь. Если изменить направление тока в роторе или статоре, вал начнет вращаться в другую сторону, причем это всегда делается с выводами ротора, что бы не происходило перемагничивание сердечников.

При одновременном изменении подключения и ротора и статора реверсирования не произойдет. Существуют также трехфазные коллекторные электродвигатели, но это уже совсем другая история.

Электродвигатели постоянного тока с параллельным возбуждением

Обмотка возбуждения (статорная) в двигателе с параллельным возбуждением состоит из большого количества витков тонкого провода и включена параллельно ротору, сопротивление обмотки которого намного меньше. Поэтому для уменьшения тока во время запуска электродвигателей мощностью более 1 Квт в цепь ротора включают пусковой реостат. Управление оборотами электродвигателя при такой схеме включения производится путем изменения тока только в цепи статора, т.к. способ понижения напряжения на клеммах очень не экономичен и требует применение регулятора большой мощности.

Если нагрузка мала, то при случайном обрыве обмотки статора при использовании такой схемы частота вращения превысит максимально допустимую и электродвигатель может пойти “вразнос”

Электродвигатели постоянного тока с последовательным возбуждением

Обмотка возбуждения такого электродвигателя имеет небольшое число витков толстого провода, и при ее последовательном включении в цепь якоря ток во всей цепи будет одинаков. Электродвигатели этого типа более выносливы при перегрузках и поэтому наиболее часто встречаются в бытовых устройствах.

Регулировка оборотов электродвигателя постоянного тока с последовательно включенной обмоткой статора может производиться двумя способами:
  1. Подключением параллельно статору регулировочного устройства, изменяющего магнитный поток. Однако этот способ довольно сложен в реализации и не применяется в бытовых устройствах.
  2. Регулирование (снижение) оборотов с помощью уменьшения напряжения. Этот способ применяется практически во всех электрических устройствах – бытовых приборах, инструменте и т.д.

Электродвигатели коллекторные переменного тока

Эти однофазные моторы имеют меньший КПД, чем двигатели постоянного тока, но из за простоты изготовления и схем управления нашли наиболее широкое применение в бытовой технике и электроинструменте. Их можно назвать “универсальными”, т.к. они способны работать как при переменном, так и при постоянном токе. Это обусловлено тем, что при включении в сеть переменного напряжение направление магнитного поля и тока будет изменяться в статоре и роторе одновременно, не вызывая изменения направления вращения. Реверс таких устройств осуществляется переполюсовкой концов ротора.

Для улучшения характеристик в мощных (промышленных) коллекторных электродвигателях переменного тока применяются дополнительные полюса и компенсационные обмотки. В двигателях бытовых устройств таких приспособлений нет.

Регуляторы оборотов электродвигателя

Схемы изменения частоты вращения электродвигателей в большинстве случаев построены на тиристорных регуляторах, ввиду своей простоты и надежности.

Принцип работы представленной схемы следующий: конденсатор С1 заряжается до напряжения пробоя динистора D1 через переменный резистор R2, динистор пробивается и открывает симистор D2, управляющий нагрузкой. Напряжение на нагрузке зависит от частоты открывания D2, зависящее в свою очередь от положения движка переменного сопротивления. Данная схема не снабжена обратной связью, т.е. при изменении нагрузки обороты также будут меняться и их придется подстраивать. По такой же схеме происходит управление оборотами импортных бытовых пылесосов.

И так, задача понизить частоту,
Двигатель, 2,2 кВт, 380В, 2850 об/мин, звезда. наружу выходят три провода.
Разобрал, изменил подключение на треугольник, подключил на одну фазу. Работает.
Но, желательно было бы понизить обороты, раза в два, тысячи до полторы.
Номинальной мощности мне все равно много, ее падение в два раза не парит ни сколько.

На сколько мне известно, частоту можно изменить основными четырьмя способами:

Изменить напряжение (тут боюсь, 110В его не вытянут)
Редуктор (очень замудренно и сильно увеличивает занимаемую площать)
Изменить кол-во полюсов (внутри только три полюса, подключением обмоток не прокатит)
Изменить частоту питающей сети (само собой, частотники, это дорого)

Об этом лекции можно не копипастить, поиском пользоваться умею.

Смысл в другом. А что, если питание пропустить через диод?
То есть, на одном полюсе урезать частоту?
Были ли у кого-то подобные эксперименты?

Регуляторы оборотов электроинструмента своими руками.

При работе с электроинструментом часто возникает необходимость регулировать его обороты.
В качестве такого регулятора оборотов для дрели можно использовать промышленный диммер (регулятор освещения) соответствующей мощности (не меньшей, чем мощность дрели). Схема регулятора ( рис.1 ) получается простейшей.
Вилка устройства вставляется в розетку сети, а вилка дрели — в розетку регулятора. Частота вращения управляется поворотом ручки диммера. В большинстве случаев в электроинструментах, применяются универсальные коллекторные электродвигатели. Они хорошо работают как на переменном, так и на постоянном токе. Но снижать для регулировки оборотов питающее напряжение не имеет смысла, так как двигатель резко уменьшает обороты, теряет мощность и останавливается. Оптимальным вариантом для регулятора электроинструмента является изменение напряжения с обратной связью по току нагрузки двигателя.
Одна из простых схем такого рода регулятора электроинструментов приведена на рис.2.
Резистивно — емкостная цепь R2-R-C2 обеспечивает формирование опорного напряжения определяющего величину оборотов электродвигателя. При увеличении нагрузки величина оборотов электродвигателя падает, снижается и его крутящий момент. Противо-ЭДС, возникающая на электродвигателе и приложенная между катодом тиристора VS1 и его управляющим электродом, уменьшается.
Вследствие этого питание на управляющем электроде тиристора возрастет пропорционально уменьшению противо-ЭДС, что заставляет его включаться при меньшем фазовом угле (угле отсечки) и пропускать на двигатель электроинструмента больший ток, компенсируя тем самым снижение оборотов под нагрузкой. Получается как бы баланс импульсного напряжения на управляющем электроде тиристора, составленного из напряжений питания и самоиндукции двигателя.
Переключатель SA1 в регуляторе позволяет при необходимости перейти на питание без регулятора оборотов.
Вторая схема регулятора оборотов электроинструмента ( рис.3 ) имеет аналогичный принцип регулировки.
Ее можно использовать для управления в мощных электроинструментах, таких как — в деревообрабатывающих станках, шлифмашинах и пр. Тиристор в данной схеме следует установить на радиатор площадью не менее 25 см 2 .
Схему регулятора, как на рис.4 , можно использовать, когда в двигателе есть доступ к обмотке возбуждения.
Мостовой выпрямитель на диодах VD1…VD4 формирует пульсирующий сигнал, а тиристор является переключателем, управляемым фазой. Этот регулятор обеспечивает плавное вращение двигателя на малых оборотах.
Выпрямительные диоды VD1. VD4 — мощные, типов Д233Б, Д234Б, Д247Б; диоды VD5 и VD6 — любые, рассчитанные на 500 В и более.
Тиристор VS1 можно заменить на КУ201Л или аналогичный по электрическим характеристикам.
Когда требуется регулировать обороты электродвигателей с большим крутящим моментом на валу, например, в электролебедке, может пригодиться двухполупериодная мостовая схема регулятора ( рис.5 ), обеспечивающая полную мощность на двигателе электроинструмента (в предыдущих работает только одна полуволна питания).
Диоды VD2 и VD6 и гасящий резистор R2 используются для питания схемы запуска. Задержка открывания тиристоров по фазе обеспечивается зарядом конденсатора С1 через R3 и R4, задаваемого стабилитроном VD8.
При зарядке конденсатора С1 до порога срабатывания однопереходного транзистора VT1 он открывается и формирует импульс запуска, от которого срабатывает тот тиристор, на аноде которого присутствует положительное напряжение.
Сопротивление R5=2/Iм (где Iм—максимальный ток нагрузки электродвигателя) зависит от типа электродвигателя и желаемой глубины обратной связи.
Регулятор, схема которого показана на рис.6 , позволяет изменять обороты дрели и других электроинструментов.
Принцип работы регулятора основан на двухполупериодном фазовом управлении симистором VS1, что обеспечивает двигателю электродрели полную потребляемую мощность.
Поскольку в дрели установлен коллекторный электродвигатель, ток в цепи симистора из-за индуктивной нагрузки прерывается, возникает ЭДС самоиндукции, что приводит к неустойчивой работе симистора. Для устранения этого эффекта параллельно VS1 включена цепочка R8-C3. Выпрямительный мост VD1. VD4 и стабилитрон VD5 обеспечивают узел управления VS1 пульсирующим питанием.
Задержку открывания VS1 по фазе определяет время зарядки конденсатора С1 через резисторы R2 и R3. При некотором пороговом напряжении на С1 однопереходный транзистор открывается, и на его нагрузочном резисторе R5 появляется импульс, который транзистор VT2 усиливает до уровня, необходимого для включения VS1. Симистор остается открытым до тех пор, пока ток, текущий через него, не уменьшится до порога его выключения. После выключения симистора С1 снова заряжается, т.е. начинается следующий цикл работы узла управления симистором.
Резистор R7 образует цепь ОС по току нагрузки. Действие ОС иллюстрируют кривые, снятые при неизменном положении движка переменного резистора R2 и работе электродрели на холостом ходу ( рис.7а ) и под нагрузкой ( рис.7б ).
Здесь t1 — время зарядки конденсатора С1, t2 — время, в течение которого симистор находится в открытом состоянии.
С увеличением нагрузки на вал электродвигателя обороты снижаются, что приводит к увеличению потребляемого тока и падения напряжения (при включенном симисторе) на R7. Когда суммарное падение на VS1 и R7 превысит напряжение закрывания однопереходного транзистора VT1, конденсатор С1 начинает заряжаться, в результате чего в новом цикле работы устройства время его зарядки до напряжения открывания транзистора VT1 становится меньше. Поэтому VS1 при каждом полупериоде будет находиться в открытом состоянии дольше, мощность на валу двигателя соответственно увеличится и восстановятся прежние обороты.

Читайте так же:
Регулировка холостого хода бензокосы штурм

В регуляторе оборотов использованы постоянные резисторы МЛТ; переменный резистор—СП4-1.
Резистор R7 намотан нихромовым проводом ø 0,3 мм на резисторе МЛТ-2 сопротивлением не менее 100 Ом.
Конденсатор С1 — КМ-6, СЗ — МБГП, С2 — К50-6.
Транзистор VT2 — КТ603А или любой из серий КТ312, КТ315.
Диоды Д223А можно заменить на Д220 или КД521А.
Трансформатор Т1 — МИТ-4 или самодельный, выполненный на кольцевом магнитопроводе типоразмера К16х10х4,5 мм из феррита 2000НМ. Обмотки содержат по 100 витков провода ПЭЛШО ø0,12 мм.
Налаживание правильно собранного регулятора оборотов электроинструмента сводится к подбору сопротивления R7, добиваясь устойчивой работы устройства.
В случае использования регулятора для работы с электродрелями устаревших моделей придется, возможно, увеличить емкость конденсатора СЗ до 0,47 мкФ.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector