4h4-auto.ru

4х4 Авто
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

2 Схемы

Простой драйвер шагового двигателя

Предлагается 2 варианта схем простейших драйверов шаговых моторов, реально рабочих, так как информация взята из зарубежных радиоконструкторов (ссылка на оригиналы в конце статьи).

Схема драйвера шагового двигателя

Простой драйвер шагового двигателя

Схема драйвера шагового двигателя не содержит дорогих деталей и программируемых контроллеров. Работа может регулироваться в широком диапазоне с помощью потенциометра PR1. Есть изменение направления вращения двигателя. Катушки шагового двигателя переключаются с помощью четырех МОП-транзисторов T1-T4. Применение в блоке транзисторов большой мощности типа BUZ10 позволит подключить двигатели даже с очень большим током.

Особенности схемы и детали

  • управление четырехфазным шаговым двигателем
  • плавная регулировка скорости вращения в пределах всего диапазона
  • изменение направления вращения мотора
  • возможная остановка двигателя
  • блок питания 12 В постоянного тока

Детали — IC1: 4070, IC2: 4093, IC3: 4027, T1-T4: BUZ10, BUZ11

Простой драйвер шагового двигателя

Блок драйвер шагового двигателя собран на печатной плате, показанной на рисунке. Монтируем, как правило, начиная с припайки резисторов и панелек для интегральных микросхем, а под конец электролитические конденсаторы и транзисторы большой мощности.

Простой драйвер шагового двигателя

Блок, собранный из проверенных компонентов, не требует настройки и запускается сразу после подачи питания. Со значениями элементов, указанными на схеме, позволяет работать двигателю 5,25” и выполняет изменение скорости вращения в интервале от 40 об./мин. до 5 об./мин.

Простой драйвер шагового двигателя

Биполярный контроллер шаговых двигателей

Схема представляет собой дешевую, и прежде всего легко собираемую альтернативу доступным микропроцессорным биполярным контроллерам шаговых двигателей. Рекомендуется там, где точность управления играет меньшую роль, чем цена и надежность.

Простой драйвер шагового двигателя

Простой драйвер шагового двигателя

Принципиальную схему можно разделить на следующие блоки:

  1. последовательный чип, генерирующий битовые строки,
  2. локальный генератор тактового сигнала,
  3. схема управления питанием катушек,
  4. выходные буферы Н-моста,
  5. схемы защиты входных сигналов управления.

Контроллер должен питаться постоянным напряжением, хорошо отфильтрованным, желательно стабилизированным.

Простой драйвер шагового двигателя

Теперь пару слов про H-мосты, которые будут работать с этим драйвером. Они должны принимать на своих входах все возможные логические состояния (00, 01, 10, 11), без риска какого-либо повреждения. Просто в некоторых конфигурациях мостов построенных из дискретных элементов, запрещается одновременное включение двух входов — их естественно нельзя использовать с этим контроллером. Мосты выполненные в виде интегральных микросхем (например L293, L298), устойчивы к этому.

Простой драйвер шагового двигателя

И в завершение третий вариант контроллера, на микросхемах STK672-440, имеющий все необходимые защиты и функции смотрите по ссылке.

Настройка драйвера A4988. Первый запуск шаговых двигателей

.Настройка драйвера A4988. Первый запуск шаговых двигателей

Продолжаю сборку станка ЧПУ. Шаговые двигателя я уже подобрал. Для проверки электроники, собрал тестовое подключение на столе.

Более подробное описание драйверов A4988 читайте на моем втором сайте ЧПУ технологии (CNC-tex.ru).

Сперва я подключил к CNC shield v3 шаговые двигателя:

  1. 17HS4401 — ток 1,7A
  2. EM-181 — ток 1,2A
  3. EM-142— значение максимального тока не нашел.

Двигателя выбраны сейчас нам нужно настроить рабочий ток драйверов A4988 для каждого шагового двигателя. Это можно сделать двумя способами:

1. Подключить двигатель в полношаговом режиме и замерить ток на одной обмотки. Он должен быть 70% от номинального тока двигателя. Т.е. для 17HS4401 1,7*0,7= 1,19 А

2. Рассчитать значение Vref — напряжение на переменном резисторе расположенном на драйвере А4988.

A4988 изменяется от номинала токочувствительных резисторов

Формула Vref для A4988 изменяется от номинала токочувствительных резисторов. Это два черных прямоугольника на плате драйвера. Обычно подписаны R050 или R100.

Vref = Imax * 8 * (RS)

Imax — ток двигателя;

RS — сопротивление резистора. В моем случае RS = 0,100.
Для 17HS4401 Vref = 1,7 * 8 * 0,100 = 1,36 В.

Читайте так же:
Схема регулировки линзовых фар

В связи с тем что рабочий ток двигателя равен 70% от тока удержания. Полученное значение нам нужно умножить на 0,7. В противном случае двигателя в режиме удержания будут сильно греться.

Для 17HS4401 Vref ист. = 1,36*0,7 = 0,952 В.

Аналогично рассчитываю значения для EM-181

Vref = 1,2 * 8 * 0,100 = 0,96 В

Vrefист. = ,96*0,7 = 0 ,672 В.

Так как я не смог найти datasheets для ЕМ-142. Для расчетов предложил, что ток на обмотку данного двигателя составляет 0,6 А. Если двигатель будит издавать гул сильнее обычного значит ток превышает максимальное значение. Его нужно понижать. Так как я взял ток обмотки. При расчете Vref ист. Не нужно умножать на 0,7, как я говорил выше ток одной обмотки составляет 70% от номинального. Расчет будет вот таким:

Vrefист. = 0,6 * 8 * 0,100 = 0,48 В.

По моим ощущениям я угадал с током двигателя ЕМ-142. Останется рассчитать сколько шагов он делает для совершения одного оборота. Об этом расскажу в следующей статье.

В видео подключил кнопки «Пауза», «Продолжить», «Аварийная остановка» . Подключил на пины шпинделя светодиод. И протестировал работу. Так же установил один конечный выключатель. Все работает. Если у вас возникли вопросу что куда подключается к CNC shield v3, читайте статью: Плата расширения для Arduino UNO, CNC shield v3 и драйверов A4988

Подписывайтесь на мой канал на Youtube и вступайте в группы в Вконтакте и Facebook.

Обзор драйвера шагового двигателя A4988

Драйвер шагового двигателя A4988

Сегодня расскажу о драйвере A4988, данный драйвер подойдет тем, кто планирует создать свой собственный 3D-принтер или станок ЧПУ с управлением шаговым двигателям.

Технические параметры

► Напряжения питания: от 8 до 35 В
► Установка шага: 1, 1/2, 1/4, 1/8, 1/16
► Напряжение логики: 3 В или 5.5 В
► Защита от перегрева: Есть
► Максимальный ток на фазу: 1 А без радиатора, 2 А с радиатором.
► Габариты модуля: 20 мм х 15 мм х 10 мм
► Габариты радиатора: 9 мм х 5 мм х 9 мм

Общие сведения о драйвере A4988

Основная микросхема модуля это драйвер от Allegro — A4988, которая имеет небольшие размеры (всего 8 мм х 6 мм), хоть микросхема и маленькая, но она может работать с выходным напряжение до 35 В с током до 1 А на катушку без радиатора и до 2 А с радиатором (дополнительным охлаждением). Для управления шаговым двигателем, необходимо всего два управляющих контакта (по сравнению с L298N необходимо четыре), один используется для управления шагами, второй для управления вращения двигателем.
Драйвер позволяет использовать пять вариантов шага, полный шаг, полшага, четверть шага, восьмой шаг и шестнадцатый шаг.

Драйвер шагового двигателя A4988

Распиновка драйвера A4988:
На драйвере A4988 расположено 16 контактов, назначение каждого можно посмотреть ниже:

Назначение контактов драйвера A4988

EN — включение и выключение модуля (0 — включен, 5 В — выключен).
MS1, MS2 и MS3 — выбор режима микро шаг (смотрите таблицу ниже).
RST — сброс драйвера.
SLP — вывод включения спящего режима, если подтянуть его к низкому состоянию драйвер перейдет в спящий режим.
STEP — управляющий вывод, при каждом положительном импульсе, двигатель делает шаг (в зависимости от настройки микро шага), чем быстрее импульсы, тем быстрее вращаться двигатель.
DIR — управляющий вывод, если подать +5 В двигатель будет вращается по часовой стрелке, а если подать 0 В против часовой стрелки.
VMOT & GND — питание шагового двигателя двигателя от 8 до 35 В (обязательное наличие конденсатора на 100 мкФ ).
2B, 2A, 1B, и 1A — подключение обмоток двигателя.
VDD & GND — питание внутренней логики от 3 В до 5,5 В.

Читайте так же:
Регулировка карбюратора бензопилы forza

Если не планируете использовать вывод RST необходимо подключить его к выводу SLP, чтобы подтянуть его к питанию, тем самым включить драйвер.

Настройка микрошага
Драйвер A4988 может работать микрошаговом режиме, то есть может подавать питание на катушки с промежуточным уровням. Например, если взять двигатель NEMA17 с шагом 1.8 или 200 оборотов, в режиме 1/4, двигатель будет выдавать 800 шагов за оборот
Дня настройки микрошагов, драйвер A4988 имеет три выхода, а именно MS1, MS2 и MS3. Установив соответствующие логические уровни для этих выводов, можно выбрать режим микрошага.

Настройка микрошага драйвера A4988

Вывода MS1, MS2 и MS3 в микросхеме A4988 подтянуты резистором к земле, поэтому, если не подключать их, двигатель будет работать в режиме полного шага.

Система охлаждения A4988
При интенсивной работе микросхемы A4988 начинает сильно греется и если температура превысит придельные значение, может сгореть. По документации A4988 может работать с током до 2 А на катушку, но на практике микросхема не греется если ток не превышает 1 А на катушку. Поэтому если ток выше 1 А необходимо устанавливать радиатор охлаждения, который идет в комплекте.

Система охлаждения драйвера A4988

Настройка тока A4988
Перед использованием мотора нужно сделать небольшую настройку, необходимо ограничить максимальную величину тока, протекающего через катушки шагового двигателя и ограничить его превышение номинального тока двигателя, регулировка осуществляется с помощью небольшого потенциометра.
Существует два способа настройки:
1. Замерить ток, для этого возьмем амперметр и подключим его в разрыв любой из обмоток (двигатель должен работать в полношаговом режиме), так же, при настройки ток должен составлять 70% от номинального тока двигателя.
2. Расчет значение напряжения Vref, согласно документации на A4988, есть формула I_TripMax = Vref / (8 × Rs), из которой мы можем получить формулу.

Vref = I_TripMax x 8 x Rs

где,
I_TripMax — номинальный ток двигателя
Rs — сопротивление на резисторе.

В моем случаи на драйвере A4988 установлены резисторы Rs = 0,100 Ом (R100), а номинальный ток двигателя 17HS4401 равняется 1,7 А.

Vref = 1,7 х 8 х 0,100 = 1,36 В

Мы рассчитали максимальное значение для двигателя 17HS4401, но при таком напряжение двигатель будет греться в режиме ожидания, необходимо уменьшить это значение на 70%, то есть:

Vref х 0,7 = 0,952 В

Осталось только настроить, берем отвертку и вольтметр, плюсовой шуп вольтметра устанавливаем на потенциометр, а шуп заземления на вывод GND и выставляем нужное значение.

Настройка тока драйвера A4988

Подключение драйвера шагового двигателя A4988 к Arduino UNO

Необходимые детали:
Arduino UNO R3 x 1 шт.
► Драйвер шагового двигателя A4988 x 1 шт.
► Шаговый двигатель 17HS4401 x 1 шт.
► Комплект проводов DuPont 2.54 мм, 20 см x 1 шт.

Подключение:
Теперь, можно приступить к сборке схемы. Первым делом, подключаем VDD и GND к 5 В и GND на Arduino. Контакты DIR и STEP подключим к цифровым контактам 2 и 3 на Arduino. Подключение шагового двигатель к контактам 2B, 2A, 1A и 1B.

Предупреждение: Подключение или отключение шагового двигателя при включенном приводе может привести к его повреждению.

Читайте так же:
Регулировка карбюратора для 4 тактных мопедов

Затем необходимо подключить контакт RST к соседнему контакту SLEEP, чтобы включить драйвер. Так-же контакты выбора микрошага необходимо оставить не подключенными, чтобы работал режим полный микрошаг. Теперь осталось подключить питание двигателя к контактам VMOT и GND, главное не забудьте подключить электролитический конденсатор на 100 мкФ, в противном случаи при скачке напряжение, модуль может выйти из строя.

Подключение драйвера A4988 к Arduino

Программа:
Теперь можно приступки к программной части и начать управлять шаговым двигателем с помощью драйвера A4988, загружайте данный скетч в Arduino.

Введение в устройство шаговых двигателей

Кому может понадобиться более двух проводов и Н-мост? Зачем? Ну, в отличие от обычных щеточных двигателей постоянного тока, построенных для максимального числа оборотов (или кВ для RC), шаговые двигатели представляют собой бесщеточные двигатели, рассчитанные на высокий крутящий момент (впоследствии меньшую скорость) и более точное вращательное движение. В то время как типичный двигатель постоянного тока отлично подходит для вращения гребного винта на высокой скорости для достижения максимальной тяги, шаговый двигатель лучше подходит для прокатки листа бумаги синхронно со струйным механизмом внутри принтера или для осторожного вращения вала линейного рельса в мельнице с ЧПУ.

Внутри шаговые двигатели являются более сложными, чем простой двигатель постоянного тока, с несколькими катушками вокруг сердечника с постоянными магнитами, но с этой дополнительной сложностью обеспечивается больший контроль. Благодаря тщательному расположению катушек, встроенных в статор, ротор шагового двигателя может вращаться с заданным шагом, изменяя полярность между катушками и переключая их полярность в соответствии с установленной схемой зажигания. Шаговые двигатели не все сделаны одинаковыми, и для их внутреннего исполнения требуются уникальные (но базовые) схемы. Обсудим наиболее распространенные типы шаговых двигателей на следующем шаге.

Шаг 2: Типы шаговых двигателей


Есть несколько различных конструкций шаговых двигателей. К ним относятся однополярное, биполярное, универсальное и переменное сопротивление. Мы будем обсуждать конструкцию и работу биполярных и однополярных двигателей, так как это наиболее распространенный тип двигателя.

У однополярных двигателей обычно есть пять, шесть или восемь проводных выводов, идущих от основания, и одна катушка на фазу. В случае пятипроводного двигателя пятый провод представляет собой соединенные центральные отводы пар катушек. В шестипроводном двигателе каждая пара катушек имеет собственный центральный отвод. В двигателе с восемью проводами каждая пара катушек полностью отделена от других, что позволяет подключать ее в различных конфигурациях. Эти дополнительные провода позволяют приводить в действие однополярные двигатели непосредственно от внешнего контроллера с простыми транзисторами, чтобы управлять каждой катушкой отдельно. Схема зажигания, в которой приводится в действие каждая катушка, определяет направление вращения вала двигателя. К сожалению, учитывая, что за один раз подается только одна катушка, удерживающий момент однополярного двигателя всегда будет меньше, чем у биполярного двигателя того же размера. Обойдя центральные отводы однополярного двигателя, он теперь может работать как биполярный двигатель, но для этого потребуется более сложная схема управления. На четвертом шаге этой статьи мы приведем в действие однополярный двигатель, который должен прояснить некоторые из представленных выше концепций.

Биполярные двигатели, как правило, имеют четыре провода и являются более прочными, чем однополярный двигатель сравнительного размера, но поскольку у нас есть только одна катушка на фазу, нам нужно повернуть ток через катушки, чтобы перейти на один шаг. Наша потребность изменить ток означает, что мы больше не сможем управлять катушками напрямую с помощью одного транзистора, вместо этого — полная цепь h-моста. Построение правильного h-моста утомительно (не говоря уже о двух!), Поэтому мы будем использовать выделенный драйвер биполярного двигателя (см. Шаг 5).

Читайте так же:
Регулировка тока балластными реостатами

Шаг 3: Понимание спецификаций шагового двигателя



Давайте поговорим о том, как определить технические характеристики двигателя. Если вы встречали двигатель квадратного сечения с определенной сборкой из трех частей (см. Рисунок три), скорее всего, это двигатель NEMA. Национальная ассоциация производителей электрооборудования имеет определенный стандарт для спецификаций двигателя, использующий простой буквенный код для определения диаметра лицевой панели двигателя, типа крепления, длины, фазного тока, рабочей температуры, фазного напряжения, шагов на оборот и проводки.

Чтение паспорта двигателя

Для следующего шага будет использован этот однополярный мотор. Выше приложена таблица данных. И хотя она краткая, она предоставляет нам все, что нам нужно для правильной работы. Давайте разберем, что в списке:

Фаза: это четырехфазный однополярный мотор. Внутренне двигатель может иметь любое количество реальных катушек, но в этом случае они сгруппированы в четыре фазы, которые могут управляться независимо.

Шаг угла: При приблизительном разрешении 1,8 градусов на шаг мы получим 200 шагов на оборот. Хотя это является механическим разрешением, с помощью микроперехода мы можем увеличить это разрешение без каких-либо изменений двигателя (подробнее об этом в шаге 5).

Напряжение: номинальное напряжение этого двигателя составляет 3 вольта. Это функция тока и номинальных сопротивлений двигателя (закон Ома V = IR, следовательно, 3V = 2A * 1,5Ω)

Ток: сколько тока нужно этому двигателю? Два ампера на фазу! Эта цифра будет важна при выборе наших силовых транзисторов для базовой схемы управления.

Сопротивление: 1,5 Ом на фазу ограничит то, какой ток мы можем подать на каждую фазу.

Индуктивность: 2,5 мГн. Индуктивная природа катушек двигателя ограничивает скорость зарядки катушек.

Удерживающий момент: это то, сколько фактической силы мы можем создать, когда на шаговый двигатель подано напряжение.

Момент удержания: это то, какой момент удержания мы можем ожидать от двигателя, когда он не находится под напряжением.

Класс изоляции: класс B является частью стандарта NEMA и дает нам рейтинг в 130 градусов Цельсия. Шаговые двигатели не очень эффективны, и постоянное потребление максимального тока означает, что они будут сильно нагреваться при нормальной работе.

Показатели обмотки: диаметр провода 0,644 мм., количество витков в диаметре 15,5, сечение 0,326 мм2

Определение пар катушек

Хотя сопротивление обмоток катушки может варьироваться от двигателя к двигателю, если у вас есть мультиметр, вы можете измерить сопротивление на любых двух проводах, если сопротивление <10 Ом, вы, вероятно, нашли пару! Это в основном процесс пробной ошибки, но он должен работать для большинства двигателей, если у вас нет номера детали / спецификации.

Шаг 4: Непосредственное управление шаговыми двигателями

Благодаря расположению проводов в однополярном двигателе мы можем последовательно включать катушки, используя только простые силовые полевые МОП-транзисторы. На рисунке выше показана простая схема с МОП-транзистором. Такое расположение позволяет просто контролировать уровень логики с помощью внешнего микроконтроллера. В этом случае легче всего использовать плату Intel Edison с коммутационной платой в стиле Arduino, чтобы получить легкий доступ к GPIO (однако подойдет любой микро с четырьмя GPIO). Для этой схемы используется транзистор IRF510 N-канальный мощный MOSFET. IRF510, способный потреблять до 5,6 ампер, будет иметь достаточно свободной мощности, чтобы удовлетворить потребности двигателя в 2 амперах. Светодиоды не нужны, но они дадут вам хорошее визуальное подтверждение последовательности работы. Важно отметить, что IRF510 должен иметь логический уровень не менее 5 В, чтобы он мог потреблять достаточный ток для двигателя. Мощность двигателя в этой цепи будет 3 В.

Читайте так же:
Инструкция для регулировки развала схождения

Полное управление однополярным двигателем с помощью этой настройки очень простое. Для того, чтобы вращать двигатель, нам нужно включить фазы в заданном режиме, чтобы он вращался правильно. Чтобы вращать двигатель по часовой стрелке, мы будем управлять фазами следующим образом: A1, B1, A2, B2. Чтобы вращать против часовой стрелки, мы просто изменим направление последовательности на B2, A2, B1, A1. Это хорошо для базового контроля, но что, если вы хотите большей точности и меньше работы? Давайте поговорим об использовании выделенного драйвера, чтобы сделать всё намного проще!

Шаг 5: Платы драйверов шаговых двигателей


Если вы хотите приступить к управлению биполярными двигателями (или однополярными двигателями в биполярной конфигурации), вам нужно взять специальную плату управления драйвером. На фото выше изображен драйвер Big Easy Driver и плата-носитель драйвера шагового двигателя A4988. Обе эти платы являются печатными платами для микрошагового двухполюсного драйвера шагового двигателя Allegro A4988, который на сегодняшний день является одним из наиболее распространенных чипов для привода небольших шаговых двигателей. Помимо наличия необходимых двойных h-мостов для управления биполярным двигателем, эти платы дают много возможностей для крошечной недорогой упаковки.

Эти универсальные платы имеют удивительно низкое соединение. Вы можете начать управлять двигателем, используя только три соединения (только два GPIO) с вашим главным контроллером: общее заземление, шаг и направление. Ступенчатый шаг и его направление остаются плавающими, так что нужно привязать их к опорному напряжению с нагрузочным резистором. Импульс, посылаемый на вывод STEP, будет перемещать двигатель на один шаг с разрешением в соответствии с эталонными выводами микрошага. Логический уровень на выводе DIR определяет, будет ли двигатель вращаться по часовой стрелке или против часовой стрелки.

В зависимости от того, как установлены выводы M1, M2 и M3, вы можете добиться увеличения разрешения двигателя с помощью микрошагования. Микрошаг включает в себя посылку разнообразных импульсов, чтобы тянуть двигатель между электромагнитным разрешением физических магнитов в роторе, обеспечивая очень точное управление. A4988 может перейти от полного шага до разрешения шестнадцатого шага. С нашим двигателем 1,8 градуса это обеспечит до 3200 шагов за оборот. Поговорим о мелких деталях!

Подключение двигателей может быть легким, но как насчет управления ими? Посмотрите эти готовые библиотеки кода для управления шаговыми двигателями:

Stepper — классика, встроенная в Arduino IDE, позволяет выполнять базовый шаг и управление скоростью вращения.

AccelStepper — гораздо более полнофункциональная библиотека, которая позволяет лучше управлять несколькими двигателями и обеспечивает правильное ускорение и замедление двигателя.

Intel C ++ MRAA Stepper — библиотека более низкого уровня для тех, кто хочет углубиться в управление необработанным шаговым двигателем C ++ с помощью Intel Edison.

Этих знаний должно быть достаточно, чтобы вы поняли как работать с шаговыми двигателями в электромеханическом мире, но это только начало.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector