4h4-auto.ru

4х4 Авто
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Область применения синхронных электродвигателей

Область применения синхронных электродвигателей

Синхронные электродвигатели отличаются от асинхронных гораздо большей мощностью и полезной нагрузкой. Изменения тока возбуждения позволяет регулировать в них нагрузку. В отличие от асинхронных двигателей в синхронных при ударных нагрузках сохраняется постоянство частоты вращения, что позволяет их использовать в различных механизмах в металлургической и металлообрабатывающей промышленности.

Двигатели с синхронным типом действия способны развивать мощность до 20 тысяч кВт, что очень важно для приведения в действие исполнительных механизмов мощных обрабатывающих станков в машиностроении и других отраслях производства. Например, в высокопроизводительных гильотинных ножницах, где имеются большие ударные нагрузки на ротор электродвигателя.

Синхронные электрические двигатели с успехом используются в качестве источников реактивной мощности в узлах нагрузки для поддержания стабильного уровня напряжения. Довольно часто двигатели с синхронным принципом действия используются в качестве силовых машин в компрессорных установках большой производительности.

Мощные двигатели выполняются с использованием системы встречной вентиляции, при которой лопасти вентилятора расположены на роторе. Экономичный и надежный синхронный двигатель обеспечивает производительную и экономичную работу насосного оборудования.

Важной характеристикой синхронных электрических машин является сохранение постоянной скорости вращения, что важно для вращения приводов в виде насосов, компрессоров, вентиляторов, и различных генераторов переменного тока. Ценным также является возможность регулирования реактивного тока за счет вариаций тока возбуждения обмоток якоря. Благодаря этому увеличивается показатель косинуса φ при всех диапазонах работы, что увеличивает кпд двигателей и снижает потери в электрических сетях.

Сами двигатели с синхронным принципом действия устойчивы к колебаниям напряжения в сети, и обеспечивают постоянство скорости вращения при их возникновении. Синхронные электродвигатели при понижении питающего напряжения сохраняют большую перегрузочную способность, по сравнению с асинхронными. Способность к форсированию тока возбуждения при понижениях напряжения повышает надежность их работы при аварийных снижениях питающего напряжения в электрической сети.

Синхронные электрические машины рентабельны при мощностях свыше 100 кВт и основное применение находят для вращения мощных вентиляторов, компрессоров и других силовых установок. В качестве недостатков синхронных машин можно отметить их конструктивную сложность, наличие внешнего возбуждения обмоток ротора, сложность запуска и довольно высокие стоимостные характеристики.

Принцип действия синхронного электродвигателя основывается на взаимодействии вращения магнитного поля якоря с магнитными полями полюсов индуктора. Якорь обычно располагается на статоре, а индуктор на подвижном роторе. При больших мощностях полюсами служат электромагниты, при этом постоянный ток подается на ротор через скользящие кольцевые контакты.

В маломощных двигателях используются постоянные магниты, расположенные на роторе. Существуют также синхронные машины с обращенным принципом работы, когда якорь размещен на роторе, а индуктор на статоре. Однако такая конструкция применяется в двигателях старых конструкций.

Синхронные электрические машины могут работать в генераторном режиме, когда якорь расположен на статоре для удобства отбора генерируемого электричества. На этом принципе основаны мощные генераторы, работающие на гидроэлектростанциях.

БЕСКОЛЛЕКТОРНЫЕ ДВИГАТЕЛИ BLDC

Бесколлекторные двигатели постоянного тока (BLDC — Brushless DC electric motor) часто используется в мотор-колесе электросамокатов и электровелосипедов. Его первые версии появились в 1960-х годах. Двигатели BLDC намного эффективнее и имеют гораздо больший крутящий момент.

Читайте так же:
Регулировка тормозных механизмов рабочей тормозной системы

Размещение постоянного магнита в роторе (внутренняя конфигурация) и управление окружающими катушками через транзисторы, позволило устранить самый важный недостаток щеточных (коллекторных) двигателей постоянного тока, которым являются сами щетки.

В альтернативной конфигурации (внешний ход) катушки якоря могут образовывать твердый сердечник, вокруг которого вращается ротор с постоянным магнитом, приводящий в движение вал двигателя. В обоих случаях катушки неподвижны.

Двигатели BLDC считаются двигателями с электронной коммутацией (ECM) в отличие от щеточных двигателей с механической коммутацией.

Общий принцип управления двигателем BLDC

Для двигателей BLDC требуются современные электронные контроллеры, которые могут определять положение ротора. Для этой цели можно использовать датчик Холла, реагирующий на положение каждой из катушек якоря при работающем двигателе. Скорость двигателя BLDC больше не может регулироваться напряжением, как в щеточных двигателях, а только путем изменения частоты переключения. Эти двигатели питаются от сигнала ШИМ, как показано на рисунке.

Двигатели BLDC делятся на 1-фазные, 2-фазные и 3-фазные, но принцип работы является общим для всех типов. Вместо механического коммутатора, изменяющего направление магнитного поля катушек ротора, используются транзисторы, которые непрерывно изменяют фазу напряжения подаваемого на катушку статора, что заставляет ротор непрерывно вращаться.

Однофазные бесколлекторные (бесщеточные) двигатели используются в устройствах с низким энергопотреблением, в то время как двухфазные чаще в устройствах средней мощности. Типичные области применения 3-фазных двигателей — устройства чтения компакт-дисков.

Управление однофазными двигателями BLDC

Однофазные двигатели BLDC имеют две параллельные обмотки якоря, управляемые напряжением ШИМ через мост H. Выходной сигнал одного датчика Холла постоянно меняет полярность тока, протекающего через обмотку якоря, таким образом поддерживая непрерывное вращение ротора. Однофазные двигатели BLDC очень просты в управлении. Для их работы достаточно одной интегральной микросхемы, например LB11970RV (однофазный двухполупериодный драйвер).

Принцип управления однофазным двигателем BLDC

Управление двухфазными двигателями BLDC

Двухфазные двигатели немного сложнее в управлении. Якорь состоит из 4 катушек, а магнитное поле создается 4 парами постоянных магнитов. Катушки якоря сгруппированы попарно, поэтому двухфазные двигатели имеют больший крутящий момент, чем однофазные.

Двухфазные двигатели обычно используются в некритических низкоуровневых устройствах, таких как большие вентиляторы, поэтому там не требуются сложные контроллеры. В результате двухфазные двигатели мощнее и дешевле. Драйверы, такие как например LB1668M, могут использоваться для их управления.

Управление 3-фазными двигателями BLDC

Трехфазные двигатели BLDC имеют 3 катушки якоря, соответствующие 6 состояниям коммутации. В каждую из катушек обычно помещают датчики Холла, которые реагируют на прохождения над ними постоянных магнитов, которые являются элементами ротора. Принцип использования сигналов от датчиков Холла показан на рисунке.

Конструкция двигателя BLDC с датчиками Холла

Тут тоже сигналы от датчиков Холла определяют моменты переключения. Эти сигналы через соответствующую систему подключения включают транзисторы, которые напрямую управляют катушками двигателя. Конечно, переключение в трехфазных двигателях происходит в 3 раза быстрее, чем в однофазных. Это приводит к снижению вибрации (дёргания) и более точному контролю скорости. Примером трехфазного драйвера двигателя BLDC с датчиками Холла является микросхема LB1976.

Читайте так же:
494 как регулировать ток

Принцип управления мотором BLDC с использованием датчиков Холла

Двигателями также можно управлять без датчиков Холла, используя сигнал BEMF (Back EMF) от каждой катушки. Этот сигнал получается путем сравнения напряжения, индуцированного в каждой из трех катушек, с центральным напряжением (точка COM). Результат такой связи усиливается и передается в систему определения положения ротора.

Сигналы от трех катушек преобразуются в формы импульсов, сдвинутых друг относительно друга на 120 °. Некоторые контроллеры используют простые компараторы для определения фазы каждой обмотки, другие требуют использования внешних микроконтроллеров. Трехфазный интегрированный бессенсорный контроллер LB11983 включает в себя датчик положения ротора со схемами запуска, синхронизации, переключения, тепловой защиты и контроля насыщения и не требует внешнего микроконтроллера.

Принцип управления двигателем BLDC с помощью сигнала BEMF

Драйверы двигателей BLDC, использующие сигналы BEMF, имеют проблему с определением положения ротора во время запуска, потому что эти сигналы еще не генерируются. В этом случае двигатель запускается с неизвестного положения, то есть неизвестно положение статора относительно ротора. Это положение необходимо быстро распознать во время работы, потому что включение неправильной фазы может изменить направление вращения двигателя и даже сделать невозможной работу.

Форум по обсуждению материала БЕСКОЛЛЕКТОРНЫЕ ДВИГАТЕЛИ BLDC

Как правильно выбрать резистор для LED, а также способы питания светодиодов.

Источник постоянного тока (CC) из понижающего регулятора напряжения (CV). Доработка готового модуля.

Схема простого кварцованного передатчика FM диапазона на мощность до 0,2 Вт, при питании от 12 В.

Подключение и испытание усилительного модуля на транзисторах КТ835 от электрофона "Россия 321 Стерео".

Почему в ж/д электровозах используются именно коллекторные двигатели постоянного тока?

Вопрос этот интересен тем, что коллекторный электродвигатель постоянного тока не является образцом энергоэффективности и надёжности. Так часть подводимой к нему электроэнергии уходит на питание обмоток возбуждения (обмотки статора). А ещё щёточно-коллекторный узел нужно инспектировать и обслуживать. Гораздо эффективнее было бы изначально устанавливать на те же советские электровозы серии ВЛ асинхронные электродвигатели. Но ведь нет же, не устанавливали. Давайте разберёмся, почему?

Прежде чем ответить на этот вопрос, нужно пояснить, что на контактную сеть РЖД подаётся однофазное переменное напряжение 25 кВ и частотой 50 Гц. Строго говоря это напряжение может просаживаться и до 21 кВ, но не должно превышать 29 кВ. Сама контактная сеть включает в себя один токоведущий воздушный провод и рельсы. Да, рельсы тоже активно участвуют в процессе электроснабжении электровоза. Вся эта сеть питается от тяговой ж/д подстанции, в которую из энергосистемы вводится высокое трёхфазное напряжение 220 — 110 кВ.

Ну а дальше в тяговой подстанции это трёхфазное напряжение фактически преобразуется в однофазное 25 кВ. Такие подстанции расположены на всём протяжении через каждые 40 — 60 км, чтобы напряжение не проседало.

Читайте так же:
Регулировка редуктора томасетто на сенсе

И отсюда у многих возникнет вопрос: а почему же нельзя подавать трёхфазный ток на контактную сеть? Зачем его преобразовывать в однофазный?

Это связано с тем, что однофазному току нужен всего лишь один воздушный провод, а трёхфазному нужно аж три. Три провода на всей протяжённости железной дороги тянуть дорого. И именно из-за экономических соображений трёхфазный ток на тяговой ж/д подстанции преобразуют в однофазный.

Таким образом через пантограф и контакт с рельсами этот однофазный ток напряжением 25 кВ и частотой 50 Гц попадает в электровоз. И что же его там ждёт? Строго говоря, ничего хорошего. Потому что на сегодняшний день не существует асинхронных электродвигателей, которые бы работали на однофазном токе с высоким КПД. А те, что существуют, маломощные и ставятся в основном на бытовую технику, и их КПД не выше 60%. Разумеется, такой низкий КПД вообще никого не устроит.

То ли дело трёхфазные асинхронные электродвигатели! У них КПД доходит до 90%. Вот они очень даже хорошо подходят для использования в качестве мощных тяговых. Только вот проблема в том, что просто так взять и дёшево преобразовать однофазный ток в трёхфазный не получится. Если вы намотаете на сердечник трансформатора одну первичную обмотку и три вторичные, то на этих трёх вторичных обмотках вы получите три однофазных тока, никак не сдвинутых между собой по фазе. А ведь мы с вами знаем, что у трёхфазного тока угол сдвига составляет 120 градусов. И именно благодаря этому сдвигу появляется вращающееся магнитное поле.

Получается, что тот фокус, который мы проделали на тяговой подстанции, преобразовав трёхфазный ток в однофазный, в обратную сторону просто так провести не удаётся. Для этого сначала нужно в самом электровозе установить управляемый выпрямитель. Он сделает однофазный переменный ток постоянным. Затем этот выпрямленный ток нужно подать на ещё одно сложное и очень дорогое устройство под названием тяговый автономный инвертор. Вот как раз он и сделает из постоянного тока трёхфазный переменный с возможностью регулировки напряжения и частоты.

Ну и конечно же эти мощные инверторы стоят неприлично дорого. В советское время на всём экономили, и поэтому трёхфазный асинхронный электродвигатель, который заполонил всю промышленность, не смог "прописаться" в электровозе. И поэтому только современные, дорогие и новые ж/д локомотивы, в которые вбухано много денег, ездят на асинхронных электродвигателях с инверторами. А подавляющее большинство электровозов РЖД до сих пор старые, советские, иногда чешские, ездят на коллекторных электродвигателях постоянного тока.

Это значит, что подводимое к электровозу переменное напряжение просто выпрямляется в нём с возможностью регулировки величины напряжения. И это постоянное напряжение питает коллекторники. Потому что так дешевле и экономически эффективнее.

ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА

Двигатели постоянного тока широко востребованы в бытовой аппаратуре, для питания которой используется постоянное напряжение.

Существуют сложности с их запуском, которые возникают из-за того, что работа электрических машин основана на взаимодействии подвижного ротора с вращающимся электромагнитным (э/м) полем статора.

Читайте так же:
Набор для регулировки рулевой рейки лачетти

В случае постоянного напряжения питания формирование вращающегося магнитного поля невозможно без применения вспомогательных узлов и устройств, выбор которых определяет существующее разнообразие модификаций двигателей такого типа.

Разновидности двигателей постоянного тока.

  • коллекторные;
  • бесколлекторные;
  • устройства с внешним возбуждением.

В первом случае для подачи питания на ламели ротора используются специальные графитовые щетки. Менять полярность подаваемого напряжения, создавая аналог вращающегося магнитного поля, удается за счет разорванной конструкции токоподающего узла (слева на рисунке).

Виды двигателей постоянного тока

В бесколлекторном двигателе вращающееся э/м поле формируется специальным коммутирующим узлом. Функцию последнего выполняют электронные схемы на полупроводниковых элементах, имеющие различное исполнение. Благодаря этому удается получить бесконтактное взаимодействие полей, без щеток и коллектора.

Типичный представитель такого электродвигателя – мотор-колесо, известное большинству любителей езды на малогабаритных транспортных средствах. Еще один распространенный способ запуска двигателя – включение в схему специальных обмоток возбуждения.

СПОСОБЫ ВОЗБУЖДЕНИЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА

Под возбуждением электродвигателей постоянного тока (ПТ) понимается эффект создания в них ЭДС, обеспечивающей вращение ротора. Их рабочие характеристики зависят от того, каким образом включена обмотка возбуждения (ОВ) по отношению к цепи якоря.

  • с независимым возбуждением (две обмотки не связаны одна с другой, а ОВ питается от отдельного источника);
  • с параллельным возбуждением или шунтируемого типа (в них ОВ включена параллельно якорной цепочке);
  • с последовательным возбуждением (ОВ включается последовательно с якорной обмоткой).

В ряде случаев, связанных с особенностями эксплуатации двигателей постоянного тока, применяется комбинированная схема включения.

Иногда ее называют «смешанной» или «компаундной» (в ней последовательное подключение совмещается с параллельным). Рассмотрим каждый из перечисленных вариантов более подробно.

Независимое возбуждение.

При этой схеме подключения обмотка возбуждения электрически не связана с катушкой якоря (рис.1). Для снижения тепловых потерь и создания необходимой величины ЭДС число витков в ней делается достаточно большим, что позволяет снизить ток возбуждения.

Принцип независимого возбуждения двигателя

Регулировать ток в якоре можно посредством резистора Rдоб, включенного последовательно. Частоту вращения можно менять резистором Rрег. Возможность независимого управления параметрами двигателя относят к плюсам этой схемы.

Ее минус – необходимость использования дополнительного источника питания, что приводит к увеличению материальных издержек. Применение схемы с независимым возбуждением определяется особенностями конструкции управляемого электропривода.

Параллельное возбуждение.

Электрическая схема подключения с параллельным возбуждением в целом напоминает рассмотренную выше. Ее особенность – наличие электрической связи ОВ с якорной цепью (рис.2).

Параллельное возбуждение обмоток двигателя постоянного тока

Эффективность работы двух рассмотренных схем практически одинакова. Преимущество этого способа включения в том, что в данной ситуации отпадает необходимость в дополнительном источнике питания. Ее минус – невозможность раздельной регулировки параметров электродвигателя.

Принцип работы электродвигателя с последовательным возбуждением.

Особенностью этой схемы является последовательное включение ОВ и якорной цепочки (рис.3). При таком варианте подключения ток якоря является одновременно и током возбуждения (Iя =Iв). Это вынуждает производителей оборудования наматывать ОВ проводом того же сечения, что и у якоря.

Последовательное возбуждение обмоток электродвигателя

Недостаток этой схемы – в том, что скорость двигателя зависит от нагрузки на валу. При ее увеличении падение напряжения на обмотках и магнитный поток возрастают. А это приводит к сильному падению скорости вращения. При снижении нагрузки частота вращения двигателя резко возрастает и может достичь опасных значений (он может начать работать «вразнос»).

Читайте так же:
Echo cs 352es регулировка карбюратора

Данный вариант применяют в случаях, когда необходимо выдерживать большое пусковое усилие (момент). Или же когда двигателю предстоит работать в режиме кратковременных перегрузок. Схемы с последовательным запуском используются в тяговых двигателях (в метро, трамваях, электровозах и троллейбусах).

Принцип действия двигателя со смешанным возбуждением.

К каждому из полюсов системы со смешанным возбуждением подключено две обмотки: последовательная и параллельная (рис.4). Их допускается включать таким образом, чтобы магнитные потоки суммировались (согласное подключение), либо вычитались один из другого (встречное включение).

Смешанное возбуждение обмоток двигателя

В зависимости от того, как соотносятся части каждого из магнитных потоков, двигатель постоянного тока со смешанным возбуждением приближаются по своим свойствам к одному из уже рассмотренных ранее вариантов.

Такие схемы применяются в ситуациях, когда необходим большой по величине пусковой момент и одновременно невозможно обойтись без регулировки частоты вращения вала при переменных нагрузках.

БЕСКОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА

Бесколлекторным называют двигатель, ток в статорных обмотках которого коммутируется особыми электронными устройствами («драйверами» или «инверторами»). Такой коммутатор состоит из набора полупроводниковых элементов, создающих вращающее поле путем подачи тока в соответствующую обмотку.

Скорость вращения вала у агрегатов этого типа значительно выше, чем у коллекторных с постоянными магнитами. Это позволяет увеличить удельную мощность двигателя и повысить его КПД.

Устройство и принцип действия.

  • статор с обмотками;
  • вращающийся ротор с постоянными магнитами;
  • контроллер, обеспечивающий формирование в статоре вращающегося э/м поля.

На статоре бесколлекторного двигателя располагаются 3 обмотки, которые, как и у электродвигателей переменного тока называются фазными.

Допустимость такого названия объясняется следующим. Несмотря на того, что эти агрегаты работают от источника постоянного напряжения (аккумуляторов) – управляющий коммутацией обмоток контроллер включает ток поочередно.

Это приводит к формированию в них переменной составляющей в виде прямоугольных импульсов. Они и создают видимость трехфазного вращающегося э/м поля, характерного для коллекторных электродвигателей синхронного или асинхронного типа.

Особенности конструкции.

В зависимости от того, по какой схеме включаются обмотки статора («звезда» или «треугольник») система содержит соответственно четыре или три рабочих шины. Катушки наматываются в пазах между зубьями сердечника статора, распределяясь равномерно по фазам.

В статор нередко интегрируются датчики Холла, фиксирующие текущее положение ротора.

С их помощью удается передавать информацию контроллеру, который в каждый момент «знает», в какой точке находится ротор и подает питающий импульс на нужную обмотку. Такая возможность повышает эффективность функционирования двигателя с максимально возможной отдачей (мощностью).

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector